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1. Introducing OpenPGP

This documentation project is designed to provide a comprehensive understanding of OpenPGP, highlighting its functionalities and applications for software developers. While this document predominantly references OpenPGP version 6, as outlined in the latest RFC [https://datatracker.ietf.org/doc/draft-ietf-openpgp-crypto-refresh/], it is important to note that the fundamental principles and functionalities of OpenPGP have remained consistent across its versions since its first release as an open standard in RFC 2440 in 1998.

This documentation project seeks to introduce all OpenPGP concepts and functionalities to application developers who wish to use it in their projects.


1.1. What is OpenPGP?

OpenPGP is an open standard for cryptographic operations. It is a system based on well-understood cryptographic building blocks. OpenPGP supports the secure delivery of files and messages between a sender and a recipient. It also addresses identities and their verification. OpenPGP is an outgrowth of the “Pretty Good Privacy (PGP)” [https://en.wikipedia.org/wiki/Pretty_Good_Privacy] encryption program and has many widely used and interoperable implementations.

With OpenPGP, you can:


	Encrypt and decrypt messages to preserve confidentiality


	Sign and verify data to ensure authenticity


	Issue and validate certifications about keys and identities, similar to the role of a Certificate Authority (CA) in validating identities.






1.2. Who is the audience for this document?

Three groups of people interact with OpenPGP:


	End users, who use software that contains OpenPGP functionality (e.g., the Thunderbird email software)


	Software developers who build applications that contain OpenPGP functionality


	Implementers of OpenPGP libraries (or other software that directly handles the processing of internal OpenPGP data structures)




This document is not intended for end users.

Instead, this document is mainly aimed at the second group, application developers, who use OpenPGP functionality in their software projects. It describes the properties of the OpenPGP system and its uses. It presupposes solid knowledge of software development concepts and of general cryptographic concepts. Thus, this text describes OpenPGP at the “library-level,” teaching concepts that will help software developers get started as a user of any implementation (e.g., OpenPGP.js [https://openpgpjs.org/], Sequoia-PGP [https://sequoia-pgp.org/]).

The document may also serve as a useful supplement to the RFC for implementers of OpenPGP libraries (or other software that directly handles internal OpenPGP data structures).

With the emergence of a new crop of modern, high-quality OpenPGP libraries, and the imminent release of the updated OpenPGP version 6 specification [https://datatracker.ietf.org/doc/draft-ietf-openpgp-crypto-refresh/], we think that now is a great time to implement OpenPGP functionality in applications or to modernize existing OpenPGP subsystems.

The goal of this document is to offer an implementation-independent introduction to the OpenPGP technology, assisting software developers in quickly familiarizing themselves and serving as a pathway to relevant information in the RFC.



1.3. Why not just use the OpenPGP RFC?

The OpenPGP RFC [https://datatracker.ietf.org/doc/draft-ietf-openpgp-crypto-refresh/]
defines the message formats used in OpenPGP. That is, it describes the internal structure of OpenPGP data, which is crucial for OpenPGP library implementers. However, this level of detail is not required for software developers who use OpenPGP via a library.

This document describes OpenPGP concepts at the “library” level of abstraction, omitting unnecessary detail about the internal encoding of OpenPGP artifacts. Instead, we focus on the properties of these OpenPGP artifacts and how they are used, while adding context that is not elaborated on in the RFC [https://en.wikipedia.org/wiki/Request_for_Comments].



1.4. Which version of OpenPGP does this address?

This documentation encompasses the core aspects of modern OpenPGP practices, applicable across different versions. This respects that, at a foundational level, there is significant overlap, continuity, and consistency from its earliest version to its latest.

While using version 6 as a reference for current standards, we include insights derived from earlier versions, particularly version 4, which continues to be widely used in ongoing projects.

Where differences between OpenPGP versions are relevant to application development, we provide focused insights to ensure the content remains as version-agnostic as possible and, thus, broadly applicable for developers working with various iterations of OpenPGP.





            

          

      

      

    

  

    
      
          
            
  

2. A high-level view


2.1. Why OpenPGP?

OpenPGP is a widely recognized, IETF-standardized set of cryptographic operations. It is broadly used in securing communications, like encrypted messages and email, and ensuring the integrity of software packages in most Linux distributions. It enjoys a vast ecosystem of libraries, tools, and community support forums. Moreover, its robustness and versatility have made OpenPGP a security choice for other use cases in which encryption and integrity are important. These include file transfer applications, password managers, secure data storage, and signing source code in git repositories.

There are other compelling reasons for why you might consider using OpenPGP in your project:


	Decentralized trust model: OpenPGP’s decentralization defines mechanisms for authentication that allow individuals and entities to create and manage their own cryptographic identities. Unlike centralized trust models, decentralized trust models empower individuals and entities to manage their own identities, fostering a community-driven web of trust instead of relying on a centralized authority, thus reducing single points of failure.


	End-to-end encryption: OpenPGP provides a robust framework for implementing end-to-end encryption. Content remains confidential, verifiable, authenticated, and protected against unauthorized access, even when the communication channel itself might be otherwise compromised. Encryption is crucial in a myriad of scenarios, particularly when transmitting sensitive information such as financial data, personally identifiable information (PII), or proprietary business data.


	Anonymity and pseudonymity: In sensitive and volatile situations where identity protection is crucial, OpenPGP can be used to provide a level of anonymity or pseudonymity that helps protect user identities. For example, OpenPGP has been used alongside other privacy tools, such as Tor [https://en.wikipedia.org/wiki/The_Tor_Project] and VPN [https://en.wikipedia.org/wiki/Virtual_private_network]s, to provide secure and anonymous communication for whistleblowers, human rights lawyers, activists in repressive regimes, and journalists, reducing their risks for retaliation and state violence.


	Interoperability: OpenPGP is a well-structured and standardized protocol, widely adopted by various public and private entities but not tied to any particular vendor’s technology. It supports all major operating systems, such as Windows, macOS, GNU/Linux, Android, and iOS. Because of standardization, wide adoption, cross-platform compatibility, and adaptability, OpenPGP’s interoperability significantly contributes to reducing development time, costs, and technical hurdles.






2.2. A very brief history

The OpenPGP standard has evolved over time, and remains under active development.

(Also see https://www.openpgp.org/about/history/)


2.2.1. Pretty Good Privacy (PGP)

The origins of OpenPGP can be traced back to Pretty Good Privacy (PGP), a software program written by Phil Zimmermann [https://en.wikipedia.org/wiki/Phil_Zimmermann] and first released in 1991.

The original PGP software played a role in the political struggles sometimes referred to as the “Crypto Wars” [https://en.wikipedia.org/wiki/Crypto_Wars] (also see “Crypto: How the Code Rebels Beat the Government Saving Privacy in the Digital” (2002) [https://en.wikipedia.org/wiki/Crypto_(book)], which includes some of PGP’s history).

The original PGP software was never under a Free Software license, despite its source code being widely published by its author. PGP’s ownership has changed over the years [https://en.wikipedia.org/wiki/Pretty_Good_Privacy#PGP_Corporation_and_Symantec], and PGP’s scope and suite of products have expanded [https://en.wikipedia.org/wiki/Pretty_Good_Privacy#PGP_Corporation_encryption_applications].



2.2.2. Standardizing OpenPGP

While PGP was first developed as commercial software, the owner at the time, PGP Inc., started a standardization effort with the IETF, first publishing RFC 1991 “PGP Message Exchange Formats” [https://datatracker.ietf.org/doc/html/rfc1991] in August 1996.

In July 1997, a process to produce an open standard under the then new name OpenPGP [https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP] was started, resulting in RFC 2440 “OpenPGP Message Format” [https://datatracker.ietf.org/doc/html/rfc2440], published in November 1998.

The name OpenPGP can be used freely by implementations, unlike the name PGP, which is a registered trademark [https://uspto.report/TM/74685229].



2.2.3. GnuPG, an early Free Software implementation

First released 1997-12-20 [https://gnupg.org/download/release_notes.html#sec-2-70] by Werner Koch, a German computer programmer, GNU Privacy Guard (GnuPG) is a free and open-source implementation of the OpenPGP standard.

GnuPG was a major early implementation of OpenPGP. Over the years, the importance of GnuPG has grown significantly as it became a foundational tool for email security, software signing, and more. It played an important (and successful) role in the release of NSA documents [https://theintercept.com/2014/10/28/smuggling-snowden-secrets/] by Edward Snowden [https://en.wikipedia.org/wiki/Edward_Snowden].

Because the GnuPG program binary is called “gpg,” “GnuPG” and “gpg” are often used interchangeably.




2.3. The RFC 4880 era


2.3.1. OpenPGP version 4

In 2007, the IETF published RFC 4880 [https://datatracker.ietf.org/doc/html/rfc4880], which defines version 4 OpenPGP artifacts. As of late 2023, version 4 is the most commonly used version.

An extension for Elliptic Curve Cryptography was defined in RFC 6637 [https://www.rfc-editor.org/rfc/rfc6637], specifying the use of three NIST prime field curves.

Some implementations explored other non-standardized extensions. Notably, algorithms based on Curve 25519 were tentatively defined in draft-koch-eddsa-for-openpgp [https://datatracker.ietf.org/doc/draft-koch-eddsa-for-openpgp/] document. These algorithms are widely used, even though draft-koch-eddsa-for-openpgp was never formally standardized.



2.3.2. Major implementations of OpenPGP

Today, multiple implementations of OpenPGP play important roles:


	The Mozilla Thunderbird email software uses RNP [https://www.rnpgp.org/], a C++ implementation of OpenPGP.


	GNU Privacy Guard (GnuPG) [https://gnupg.org/], a key implementation of the OpenPGP standard, is integral to numerous critical infrastructures, most prominently in ensuring package integrity verification for Linux distributions.


	Proton Mail, which provides email encryption services for a large number of users, uses and maintains OpenPGP.js [https://openpgpjs.org/] as well as GopenPGP [https://gopenpgp.org/], an OpenPGP wrapper library written in golang.


	The RPM Package Manager software includes an OpenPGP backend based on Sequoia PGP [https://sequoia-pgp.org/], a modern OpenPGP implementation written in Rust. The Fedora Linux operating system uses Sequoia PGP in rpm [https://sequoia-pgp.org/blog/2023/04/27/rpm-sequoia/] since version 38.






2.3.3. Interoperability

OpenPGP was standardized in 1997 to encourage development of interoperable implementations. This has already been a success early on, but in recent years, there has been much development of new implementations.

Historically, interoperability has only been tested in an adhoc manner. Since 2019, the Sequoia project is maintaining and operating the “OpenPGP interoperability test suite” [https://tests.sequoia-pgp.org/], for more rigorous and systematic testing. The test suite has identified numerous issues [https://gitlab.com/sequoia-pgp/openpgp-interoperability-test-suite#hall-of-fame].




2.4. The road ahead


Note

Software and protocol development sometimes skips version numbers due to reasons like internal testing, significant changes, avoiding confusion, marketing decisions, or technical issues. The official successor to OpenPGP version 4 is OpenPGP version 6, detailed below.




2.4.1. OpenPGP version 6

As of this writing (in 2023), version 6 of OpenPGP [https://datatracker.ietf.org/doc/draft-ietf-openpgp-crypto-refresh/] is approaching publication as an RFC.
The IETF OpenPGP working group [https://datatracker.ietf.org/wg/openpgp/about/#autoid-1] is focused on updating the cryptographic mechanisms, adding new algorithms, and the deprecation of obsolete algorithms.

This document describes OpenPGP version 6, while pointing out differences to previous versions that are relevant to application developers.

Significant support for OpenPGP version 6 has already been achieved for multiple implementations, including:


	Bouncy Castle Java [https://github.com/bcgit/bc-java/issues/1421],


	GopenPGP [https://github.com/ProtonMail/gopenpgp/tree/v3],


	OpenPGP.js [https://github.com/openpgpjs/openpgpjs/releases/tag/v6.0.0-alpha.0],


	PGPy [https://github.com/dkg/PGPy/tree/dkg/crypto-refresh],


	Sequoia PGP [https://gitlab.com/sequoia-pgp/sequoia/-/tree/crypto-refresh].




Initial efforts to incorporate support for OpenPGP version 6 have been undertaken in the PGPainless and RNP implementations.



2.4.2. Post-quantum cryptography in OpenPGP

There is ongoing work [https://datatracker.ietf.org/doc/draft-ietf-openpgp-pqc/] to standardize and add support for post-quantum public-key algorithms in OpenPGP. This project is funded by the german “BSI” [https://en.wikipedia.org/wiki/Federal_Office_for_Information_Security]. Goals include adding support for post-quantum cryptography to Thunderbird and GnuPG. A presentation [https://datatracker.ietf.org/meeting/113/materials/slides-113-openpgp-a-post-quantum-approach-for-openpgp-00] was given at IETF 113 [https://datatracker.ietf.org/meeting/113/session/openpgp/].




2.5. Zooming in: Internal structure of OpenPGP data

OpenPGP data is internally structured as “packets.” We’ll look into examples of this internal structure in a series of chapters at the end of this document.

Getting familiar with the internal format of OpenPGP data provides practical insight into the RFC [https://datatracker.ietf.org/doc/draft-ietf-openpgp-crypto-refresh/], which describes the internal structure of OpenPGP packets in full detail, and may also come in handy for debugging issues.

(Most of the time, however, we will look at OpenPGP artifacts at a higher level of abstraction.)





            

          

      

      

    

  

    
      
          
            
  

3. Cryptographic concepts and terms


3.1. Cryptographic hash functions

Cryptographic hash functions [https://en.wikipedia.org/wiki/Cryptographic_hash_function] take data strings of any length (like a text message or file) and output a fixed-size code, a “hash digest,” which is often abbreviated as either “digest” or “hash.” A hash digest is also sometimes called a “(cryptographic) checksum.” A hash digest acts like a unique identifier for the original data.

Cryptographic hash functions have two important properties:


	Pre-image resistance [https://en.wikipedia.org/wiki/Preimage_attack]: Given a hash digest, it should be very difficult to determine any data that matches this hash digest (including, but not limited to, the original data the hash represents). This property embodies the concept of a one-way function [https://en.wikipedia.org/wiki/One-way_function] – a calculation that is easy to perform, but very hard to reverse.


	Collision resistance [https://en.wikipedia.org/wiki/Collision_resistance]: It should be very difficult to find two distinct pieces of data that map to the same hash digest.






3.2. Message authentication codes

A message authentication code [https://en.wikipedia.org/wiki/Message_authentication_code] (MAC), also known as an authentication tag, is a small piece of information used to verify the integrity and authenticity of a message.

It is derived from the original message using a (symmetric) secret key. The recipient of a message containing a MAC, who is also in possession of the secret key, can verify that the message has not been altered.

HMAC [https://en.wikipedia.org/wiki/HMAC] is a type of MAC that relies on a hash function. It is used in the OpenPGP protocol.


3.2.1. Key derivation functions

A hash function can also be used to create a key derivation function [https://en.wikipedia.org/wiki/Key_derivation_function] (KDF).
One application of KDFs is to generate symmetric key material from a password by iteratively passing it through a hash function.

A notable KDF for the OpenPGP specification is the HKDF [https://en.wikipedia.org/wiki/HKDF], which is a key derivation function based on the HMAC.

For detailed information on KDFs and their role in the OpenPGP protocol, see the encrypted secrets chapter and the SEIPDv2 section of the encryption chapter.




3.3. Symmetric-key cryptography

Symmetric-key cryptography [https://en.wikipedia.org/wiki/Symmetric-key_algorithm] uses the same cryptographic key for both encryption and decryption, unlike asymmetric cryptography where a pair of keys is used: a public key for encryption and a corresponding private key for decryption. Symmetric-key cryptographic systems support encryption/decryption operations.

Participants in symmetric-key operations need to exchange the shared secret over a secure channel.


[image: Depicts a box with a white background and the title "Symmetric key". In the box a single key symbol, rendered with full yellow line, is shown pointing to the right hand side.]
Fig. 1 A symmetric cryptographic key (which acts as a shared secret)




3.3.1. Benefits and downsides

Symmetric-key cryptography has major benefits: It is much faster than public-key cryptography (see below). Also, most current symmetric-key cryptographic mechanisms are believed to be resilient against possible advances in quantum computing[1].

However, exchanging the required shared secret is a problem that needs to be solved separately.

Hybrid cryptosystems combine the advantages of symmetric-key cryptography with a separate mechanism for managing the shared secret, using public-key cryptography.



3.3.2. Symmetric-key cryptography in OpenPGP

Symmetric-key cryptography is used in OpenPGP in three contexts:


	most prominently, as part of a hybrid cryptosystem to encrypt and decrypt data,


	to encrypt password-protected private key material [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-secret-key-encryption], and


	for password-protected data encryption [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-symmetric-key-encrypted-ses], a less commonly used feature of the standard.




Where symmetric keys are used in OpenPGP for data encryption, they are called either “message keys” or “session keys[2].”



3.3.3. Authenticated encryption with associated data (AEAD)

Authenticated encryption [https://en.wikipedia.org/wiki/Authenticated_encryption] offers more than just confidentiality; it ensures data integrity too.

In OpenPGP version 6, AEAD replaced the MDC[3] mechanism to address malleability. In earlier OpenPGP versions, malicious alterations to ciphertext might go unnoticed. AEAD guards against such undetected changes.

By addressing the malleability problem, AEAD also counters a variation of the EFAIL[4] attack.




3.4. Public-key (asymmetric) cryptography

Public-key cryptography [https://en.wikipedia.org/wiki/Public-key_cryptography] uses asymmetric pairs of related keys. Each pair consists of a public key and a private key. These systems support encryption, decryption, and digital signature operations.

Unlike symmetric cryptography, participants are not required to pre-arrange a shared secret. In public-key cryptography, the public key material is shared openly for certain cryptographic operations, such as encryption and signature verification, while the private key, kept confidential, is used for operations like decryption and signature creation.


3.4.1. Asymmetric cryptographic key pairs

Throughout this document, we will frequently reference asymmetric cryptographic key pairs:


[image: Depicts a box with white background and the title "Asymmetric keypair". In the box two key symbols with text next to them are shown. The top key symbol is rendered using full green lines, points to the right hand side and has the accompanying text "Public key". The lower key symbol is rendered using dotted red lines, points to the left hand side and has the accompanying text "Private key".]
Fig. 2 An asymmetric cryptographic key pair



Each key pair comprises two parts: the public key and the private key. For ease of identification in this documentation, the public key will be shown in green and the private key in red. Additionally, public keys are depicted with a solid border and pointing to the right, while private keys are shown with a dotted border and pointing to the left.

It’s important to note that in many scenarios, only the public key is exposed or used. These situations will be elaborated upon in subsequent sections of this document.


[image: Depicts a box with white background and the title "Public part of an asymmetric keypair". In the box one key symbol with text next to it is shown. The key symbol is rendered using full green lines, points to the right hand side and has the accompanying text "Public key".]
Fig. 3 The public part of an asymmetric key pair





3.4.2. Usage and terminology in OpenPGP

OpenPGP extensively uses public-key cryptography for encryption and digital signing operations.


Terminology

OpenPGP documentation, including the foundational RFC, opts for the term “secret key” over the more widely accepted “private key.” As a result, in the RFC, you’ll encounter the “public/secret key” pairing more frequently than “public/private key.” This terminology reflects historical developments in the OpenPGP community, not a difference in technology.

While “secret key” (as used in the OpenPGP RFC) and “private key” serve the same purpose in cryptographic operations, this document will use the more common “public/private” terminology for clarity and consistency with broader cryptographic discussions.





3.4.3. Cryptographic digital signatures

Digital signatures [https://en.wikipedia.org/wiki/Digital_signature] are a fundamental mechanism of asymmetric cryptography, providing secure, mathematical means to validate the authenticity, integrity, and origin of digital messages and documents.

In OpenPGP, digital signatures have diverse applications, extending beyond mere validation of a message’s origin. They can signify various intents, including certification, consent, acknowledgment, or even revocation by the signer. The multifaceted nature of “statements” conveyed through digital signatures in cryptographic protocols is wide-ranging but crucial, allowing third parties to inspect/evaluate these statements for authenticity and intended purpose.

Digital signatures in OpenPGP are used in two primary contexts:


	Data signatures


	Signatures on components







3.5. Hybrid cryptosystems

Hybrid cryptosystems [https://en.wikipedia.org/wiki/Hybrid_cryptosystem] combine the use of symmetric and asymmetric (public-key) cryptography to capitalize on the strengths of each, namely symmetric cryptography’s speed and efficiency and public-key cryptography’s mechanism for secure key exchange.


3.5.1. Usage and terminology in OpenPGP

OpenPGP uses a hybrid cryptosystem for encryption.  This approach involves generating unique shared secrets, known as “session keys,” for each session. For detailed information on this topic, please refer to the chapters Encryption and Decryption.



[1]
Daniel J. Bernstein (2009). “Introduction to post-quantum cryptography” (PDF) [http://www.pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf] states that: “many important classes of cryptographic systems”, including secret-key cryptographic mechanisms like AES “[..] are believed to resist classical computers and quantum computers.” (pages 1, 2).



[2]
In OpenPGP version 6, the “Version 2 Symmetrically Encrypted Integrity Protected Data Packet Format” [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-version-2-symmetrically-enc] requires that a “message key” is derived from a “session key.” In contrast, up to OpenPGP version 4, and in version 6 when using “Version 1 Symmetrically Encrypted Integrity Protected Data Packet Format” [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-version-1-symmetrically-enc], the “session key” was used directly as a symmetric encryption key.



[3]
OpenPGP version 4 introduced a mechanism called MDC (Modification Detection Code), which fulfills a comparable purpose as AEAD in safeguarding message integrity. MDC is a non-standard mechanism, but no known attacks have compromised this scheme as of this document’s last update.



[4]
A variation of the EFAIL [https://en.wikipedia.org/wiki/EFAIL] attack can be prevented by both the MDC and AEAD mechanisms. Also see “No, PGP is not broken, not even with the Efail vulnerabilities,” [https://proton.me/blog/pgp-vulnerability-efail] especially the section “Malleability Gadget Exfiltration Channel Attack.”








            

          

      

      

    

  

    
      
          
            
  

4. Certificates

OpenPGP fundamentally hinges on the concept of “OpenPGP certificates,” also known as “OpenPGP public keys.” These certificates are complex data structures essential for identity verification, data encryption, and digital signatures. Understanding their structure and function is pivotal to effectively applying the OpenPGP standard.

An OpenPGP certificate, by definition, does not contain private key material.

Fundamentally, the effective management of certificates and a thorough grasp of their authentication and trust models are crucial for proficient OpenPGP usage. Although this document offers just a brief overview of these aspects, they form a fundamental part of the broader OpenPGP framework and warrant further study.


	For an in-depth exploration of OpenPGP’s private key material, refer to Managing private key material in OpenPGP. This chapter provides essential insights into private key management and security practices.


	The bindings that link the components of a certificate are comprehensively discussed in Signatures on components, offering a deeper understanding of certificate structure and integrity.


	Finally, our chapter Zooming in: Packet structure of certificates discusses the internal structure of certificates in detail.





4.1. Terminology: Understanding “keys”

The term “(cryptographic) keys” is central to grasping the concept of OpenPGP certificates. However, it can refer to different entities, making it a potentially confusing term. Let’s clarify those differences.


4.1.1. Public vs. private keys

The term “key,” without additional context, can refer to either public or private asymmetric key material. Additionally, symmetric keys may be used in OpenPGP to encrypt private key material, adding a layer of security and complexity.



4.1.2. Layers of keys in OpenPGP

In OpenPGP, the term “key” may refer to three distinct layers, each serving a unique purpose:


	A (bare) “cryptographic key” comprises the private and/or public parameters forming a key. For instance, in the case of an RSA private key, the key consists of the exponent d along with the prime numbers p and q.


	An OpenPGP component key includes either an “OpenPGP primary key” or an “OpenPGP subkey.” It is a building block of an OpenPGP certificate, consisting of a cryptographic keypair coupled with some invariant metadata, such as key creation time.


	An “OpenPGP certificate” (or “OpenPGP key”) consists of several component keys, identity components, and other elements. These certificates are dynamic, evolving over time as components are added, expire, or are marked as invalid.




The following section will delve into the OpenPGP-specific layers (2 and 3) to provide a clearer understanding of their roles within OpenPGP certificates.




4.2. Structure of OpenPGP certificates

An OpenPGP certificate (or “OpenPGP key”) is a collection of an arbitrary number of elements[1]:


	Component keys


	Identity components


	Additional metadata, including connections between the certificate’s components




This documentation collectively refers to component keys and identity components as “the components of a certificate.”


[image: Depicts a box with white background and the title "OpenPGP certificate". In the box several other boxes and accompanying texts, representing component keys and User IDs, are shown. There are three component keys boxes with a green frame, each with a dotted lower-left section, that shows the text "key creation time" and the green public key symbol in the lower right area. All three have a title, a unique fingerprint below the box and a unique capability keyword, perpendicular to the box on the right side. The top-most component key box has a light-green background, with the title "Component Key (primary)" and capability keyword "certification". The second-to-top component key box has a white background, with the title "Component Key" and capability keyword "encryption". The lowest component key box has a white background, with the title "Component Key" and capability keyword "signing". There are two User ID boxes, each with a black frame, open to top left and lower right corner. Both boxes have a user icon on the top left side, the title "User ID" on the top right side and a User ID string at the bottom. The top box has "Alice Adams <alice@example.org>" and the lower box has "Alice" as User ID string.]
Fig. 4 Typical components in an OpenPGP certificate



Every element in an OpenPGP certificate revolves around a central component: the OpenPGP primary key. The primary key acts as a personal certification authority (CA) for the certificate’s owner, enabling cryptographic statements regarding subkeys, identities, expiration, revocation, and more.


Note

OpenPGP certificates tend to have a long lifespan, with the potential for modifications (typically by their owner) over time. Components may be added or invalidated throughout a certificate’s lifetime. However, once published, components cannot be removed from certificates.





4.3. Component keys

An OpenPGP certificate usually contains multiple component keys. Component keys serve in one of two roles: either as an “OpenPGP primary key” or as an “OpenPGP subkey.”

OpenPGP component keys logically consist of an asymmetric cryptographic keypair and a creation timestamp. Once created, these attributes of a component key remain fixed (for ECDH keys, two additional parameters are part of a component key’s constitutive data[2]).


[image: Depicts a box with white background and no title. In the box one other box is shown. The inner box has a green frame, with a dotted lower-left section, that shows the text "key creation time" and the green public key symbol, as well as the red-dotted private key symbol in the lower right area. In the top left of the inner box the text reads "Component Key."]
Fig. 5 An OpenPGP component key



Component keys containing private key material also include metadata specifying the password protection scheme. This is another facet of metadata, akin to the aforementioned creation timestamp and additional parameters for certain algorithms. However, this discussion focuses on OpenPGP certificates, in which the component keys contain only the public part of its cryptographic key data. For information on private keys in OpenPGP, see Managing private key material in OpenPGP.


4.3.1. Fingerprint

Each OpenPGP component key possesses an OpenPGP fingerprint. This fingerprint is derived from the public key material, the creation timestamp, and, when relevant, the ECDH parameters.


[image: Depicts a box with white background and the title "Fingerprint of an OpenPGP component key." Inside, another box with a green frame, the title "Component Key", the text "key creation time" on the lower left and a the green public key symbol on the lower right is shown. Below the component key box a fingerprint in a box with a light-yellow background and a yellow dotted line is depicted. The word "Fingerprint" is shown left of the box with the fingerprint and both are connected with a yellow dotted line.]
Fig. 6 Every OpenPGP component key is identifiable by a fingerprint.



The fingerprint of our example OpenPGP component key is C0A5 8384 A438 E5A1 4F73 7124 26A4 D45D  BAEE F4A3 9E6B 30B0 9D55 13F9 78AC CA94[3].


Note

In practice, the fingerprint of a component key, while not theoretically unique, functions effectively as a unique identifier. The use of a cryptographic hash algorithm in generating fingerprints makes the occurrence of two different component keys with the same fingerprint extremely unlikely[4].





4.3.2. Primary key

The OpenPGP primary key is a component key that serves a distinct, central role in an OpenPGP certificate:


	Its fingerprint acts as an identifier for the entire OpenPGP certificate.


	It facilitates lifecycle operations, such as adding or invalidating subkeys or identities within a certificate.





Terminology

In the RFC, the OpenPGP primary key is occasionally referred to as “top-level key.” Informally, it has also been termed the “master key.”





4.3.3. Subkeys

Modern OpenPGP certificates typically include several subkeys in addition to the primary key, although these subkeys are optional.

While subkeys have the same structural attributes as the primary key, they fulfill  different roles. Subkeys are cryptographically linked with the primary key, a relationship further discussed in Section 8.2.1.


[image: Diagram depicting three component keys. The primary key is positioned at the top, designated for certification. Below it, connected by arrows, are two subkeys labeled as "for encryption" and "for signing," respectively.]
Fig. 7 OpenPGP certificates can contain multiple subkeys.






4.4. Identity components

Identity components in an OpenPGP certificate are used by the certificate holder to state that they are known by a certain identifier (like a name, or an email address).


4.4.1. User IDs in OpenPGP certificates

OpenPGP certificates can contain multiple User IDs [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#uid]. Each User ID associates the certificate with an identity.


[image: Depicts a diagram with white background and the title "User IDs". Inside, a public primary component key for certification and a User ID is shown. A green arrow points from component key to User ID and is annotated with a signature.]
Fig. 8 Relationship of User ID to primary component key in an OpenPGP certificate



A typical User ID identity is a UTF-8-encoded string composed of a name and an email address. By convention, User IDs align with the format described in RFC2822 [https://www.rfc-editor.org/rfc/rfc2822] as a name-addr.

For further conventions on User IDs, refer to the document draft-dkg-openpgp-userid-conventions-00 [https://datatracker.ietf.org/doc/draft-dkg-openpgp-userid-conventions/], dated 25 August 2023.

Split User IDs

One proposed variant for encoding identities in User IDs is to use “split User IDs” [https://dkg.fifthhorseman.net/blog/2021-dkg-openpgp-transition.html#split-user-ids]. Although uncommon, there are currently no significant technical barriers to implementing this format[5].

The rationale for split User IDs lies in the distinction between a name and an email address, which represent two separate facets of an individual’s identity. Separating these elements simplifies the process for third parties tasked with certifying that an identity is legitimately connected to a certificate.

Consider this scenario: A third party is confident about the email-based identity of an individual (e.g.,<alice@example.org>) and is willing to certify it. However, they might not have sufficient knowledge about the person’s name-based identity (e.g., Alice Adams), so are unwilling to extend the same level of certification. Split User IDs address this dichotomy by allowing distinct certification processes for each type of identity.



4.4.2. Implications of the Primary User ID

Within a certificate, a specific User ID is designated as the Primary User ID [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-primary-user-id].

Each User ID carries associated preference settings, such as preferred encryption algorithms, which is detailed in Section 26.4). When a certificate is used in the context of a specific identity, then the preferences associated with that identity component are used. When a certificate is used without reference to a specific identity, the preferences associated with the direct key signature, or the primary User ID take precedence by default.

The primary User ID was historically the main store for preferences that apply to the certificate as a whole. For more on this, see Adding global metadata to a certificate.



4.4.3. User attributes in OpenPGP

While
user attributes [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#user-attribute-packet] are similar to User IDs, they are less commonly used.

Currently, the OpenPGP standard prescribes only one format to be stored in user attributes: an image [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-the-image-attribute-subpack] in JPEG format. Typically, this image represents the key owner, although it is not required.




4.5. Linking the components

To form an OpenPGP certificate, individual components are interconnected by the certificate holder using their OpenPGP software. Within OpenPGP, this process is termed “binding”, as in “a subkey is bound to the primary key.” These bindings are realized using cryptographic signatures. An in-depth discussion of this topic can be found in Signatures on components.

In very abstract terms, the primary key of a certificate acts as a root of trust or “certification authority.” It is responsible for:


	issuing signatures that express the certificate holder’s intent to use specific subkeys or identity components;


	conducting other lifecycle operations, including setting expiration dates and marking components as invalidated or “revoked.”




By binding components using digital signatures, recipients of an OpenPGP certificate need only validate the authenticity of the primary key to use for their communication partner. Traditionally, this is done by manually verifying the fingerprint of the primary key. Once the validity of the primary key is confirmed, the validity of the remaining components can be automatically assessed by the user’s OpenPGP software. Generally, components are valid parts of a certificate if there is a statement signed by the certificate’s primary key endorsing this validity.



4.6. Metadata in certificates

OpenPGP certificates, their component keys, and identities possess metadata that is not stored within the components it pertains to. Instead, this metadata is stored within signature packets, which are integral to the structure of an OpenPGP certificate.

Key attributes, such as capabilities (like signing or encryption) and expiration times, are examples of metadata not stored in the component key data. How this metadata is stored depends on the component:


	Primary key metadata is defined either through a direct key signature on the primary key (preferred in OpenPGP version 6), or by associating the metadata with the Primary User ID.


	Subkey metadata is defined within the subkey binding signature that links the subkey to the certificate.


	Identity component metadata is associated via the certifying self-signature that links the identity (usually in the form of a User ID) to the certificate.




It is crucial to note that the components of an OpenPGP certificate remain static after their creation. The use of signatures to store metadata allows for subsequent modifications without altering the original component. For instance, a certificate holder can update the expiration time of a component by issuing a new, superseding signature.


[image: Depicts a direct key signature, associated with a primary component key.]
Fig. 9 Metadata can be associated with the primary key using a direct key signature.




4.6.1. Defining operational capabilities of component keys with key flags

Each component key has a set of “key flags” [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#key-flags] that delineate the operations a key can perform.

Commonly used key flags include:


	Certification: enables issuing third-party certifications


	Signing: allows the key to sign data


	Encryption: allows the key to encrypt data


	Authentication: primarily used for SSH authentication[6]





Note

Distinct component keys handle specific operations. Only the primary key can be used for certification, although it can have additional capabilities. Subkeys can be used for signing, encryption, and authentication but cannot have the certification capability. A component key can technically have multiple capabilities. It is considered good practice, however, to use separate keys for each capability [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#section-10.1.5-7].

Notably, in many algorithms, encryption and signing-related functionalities (i.e., certification, signing, authentication) are mutually exclusive, because the algorithms only support one of those two families of operations[7].





4.6.2. Algorithm preferences and feature signaling

OpenPGP incorporates significant “cryptographic agility” [https://en.wikipedia.org/wiki/Cryptographic_agility]. It doesn’t rely on a single fixed set of algorithms. Instead, it defines a suite of cryptographic primitives from which users (or their applications) can choose.

This agility facilitates the easy adoption of new cryptographic primitives into the standard, allowing for a seamless transition. Users can gradually migrate to new cryptographic mechanisms without disruption.

However, this approach requires that OpenPGP software determine the cryptographic mechanisms that a set of communication partners can handle and prefer. OpenPGP employs several mechanisms for this purpose, which allow negotiation between sender and recipient. It’s important to note that OpenPGP is not an online scheme; thus, this negotiation is effectively one-way. The active party interprets the preferences expressed in the certificate of the passive party.

Negotiation mechanisms in OpenPGP include:


	Preferred hash algorithms [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#preferred-hashes-subpacket]


	Preferred symmetric ciphers for v1 SEIPD [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#preferred-v1-seipd]


	Preferred AEAD ciphersuites [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#preferred-v2-seipd]


	Features subpacket [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#features-subpacket]


	Preferred compression algorithms [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#preferred-compression-subpacket]




Beyond these explicitly expressed preferences, implementations also deduce capabilities of communication partners based on the version of the OpenPGP certificate they possess.


4.6.2.1. User ID-specific preferences

As a starting point, a certificate has a set of preferences that apply generally. These are defined either in a direct key signature, or via the primary User ID of the certificate.

Additionally, OpenPGP allows modeling User ID-specific preferences. The idea is that a user may prefer a different suite of algorithms on their private email account compared to their work email account. Such identity-specific preferences can be expressed on the certifying signatures that bind User IDs to a certificate.





4.7. A typical OpenPGP certificate, revisited

Following our review of how keys and identity components are linked, let’s reexamine the OpenPGP certificate from Fig. 4. Our focus now extends to all of its binding signatures and the direct key signature that contains metadata for the full certificate:


[image: Depicts an OpenPGP certificate, including a set of components, binding signatures, and a direct key signature on the primary key.]
Fig. 10 This shows a typical OpenPGP certificate, including binding signatures for all of its components, and a signature that associates metadata with the primary key.





4.8. Revocations

When a certificate holder needs to invalidate certain components of their certificate, or even the entire certificate, they accomplish this through “revocation.” Revoking the primary key renders the entire certificate invalid.

Notably, revocations are not the only means by which components can become invalid. Other factors, such as the passing of a component’s expiration time, can also render components invalid.

For more detailed information on revoking specific components of a certificate, see the section on Revocation self-signatures: Invalidating certificate components.



4.9. Third-party (identity) certifications

Since its inception, third-party identity certifications have been a cornerstone of the OpenPGP ecosystem. The original PGP designers, starting with Phil Zimmermann, advocated for decentralized trust models over reliance on centralized authorities. This decentralized approach in OpenPGP is known as the “Web of Trust.”

Third-party certifications are statements by OpenPGP users confirming that a user with a specific identity is the owner of a  particular OpenPGP certificate.

For example, Bob’s OpenPGP software may issue a certification that Bob has checked that the User ID Alice Adams <alice@example.org> and the certificate with the fingerprint AAA1 8CBB 2546 85C5 8358 3205 63FD 37B6  7F33 00F9 FB0E C457 378C D29F 1026 98B3 are legitimately linked.

Take, for instance, a scenario where Bob’s OpenPGP software issues a certification confirming as legitimate the link between the User ID Alice Adams <alice@example.org> and the certificate bearing the fingerprint AAA1 8CBB 2546 85C5 8358 3205 63FD 37B6  7F33 00F9 FB0E C457 378C D29F 1026 98B3.

This process assumes that Bob knows the person known as Alice Adams and is confident that alice@example.org is indeed Alice’s email address. Bob also verifies that the certificate his OpenPGP software associates with Alice matches the one Alice uses. In essence, both users must have a certificate for Alice with an identical fingerprint. In OpenPGP version 6, manual fingerprint comparison by end users is discouraged, with a replacement verification mechanism still under development. The verification process must occur over a sufficiently secure channel, such as an end-to-end encrypted video call or a face-to-face meeting.

For more on third-party certifications, see Authentication and delegation in third-party signatures.



[1]
In technical terms, the elements of an OpenPGP certificate are a collection of “packets.” Each component key and identity component is internally represented as a packet. Another common type of packet is the “signature” packet, which connect the components of a certificate.



[2]
For ECDH [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-algorithm-specific-part-for-ecd] component keys, two additional algorithm parameters are integral to the component key’s constitutive and immutable properties. Those parameters specify a hash function and a symmetric encryption algorithm.



[3]
In OpenPGP version 4, the rightmost 64 bits were sometimes used as a shorter identifier, called “Key ID.”
For example, an OpenPGP version 4 certificate with the fingerprint B3D2 7B09 FBA4 1235 2B41 8972 C8B8 6AC4 2455 4239 might be referenced by the 64-bit Key ID C8B8 6AC4 2455 4239 or formatted as 0xC8B86AC424554239.

Historically, even shorter 32-bit identifiers were used, like this: 2455 4239, or 0x24554239. Such identifiers still appear in very old documents about PGP. However, 32-bit identifiers have been long deemed unfit for purpose [https://evil32.com/]. At one point, 32-bit identifiers were called “short Key ID,” while 64-bit identifiers were referred to as “long Key ID.”



[4]
For both OpenPGP version 6 and version 4, the likelihood of accidental occurrence of duplicate fingerprints is negligible when key material is generated based on an acceptable source of entropy. A separate question is if an attacker can purposely craft a second key with the same fingerprint as a given pre-existing component key. With the current state of the art, this is not possible for OpenPGP version 6 and version 4 keys. However, at the time of this writing, the SHA-1-based fingerprints of OpenPGP version 4 are considered insufficiently strong at protecting against the generation of pairs of key material with the same fingerprint.



[5]
Historically, the OpenPGP ecosystem faced challenges in this context. For further details, refer to Daniel Kahn Gillmor’s January 2019 article, “What were Separated User IDs” [https://dkg.fifthhorseman.net/blog/2019-dkg-openpgp-transition.html#what-were-separated-user-ids].



[6]
It’s important to note that the function of the  authentication [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-authentication-via-digital-] key flag is unrelated to the authentication process used in certifying OpenPGP identities and linking them to certificate. Rather, this flag indicates a mechanism that uses cryptographic signatures to confirm control of private key material with a remote system.



[7]
With ECC algorithms, it’s impossible to combine encryption functions with those intended for signing. For example,  ed25519 is specifically used for signing; cv25519 is designated for encryption.







            

          

      

      

    

  

    
      
          
            
  

5. Managing private key material in OpenPGP


5.1. Overview of private keys

This chapter discusses the handling of private key material within OpenPGP.

Private key material is associated with component keys, which are integral parts of OpenPGP certificates. For a discussion of packet structure internals, see the chapter Zooming in: Packet structure of private key material.



5.2. Terminology: “certificates” and “private keys”

Recall that in this document, the term OpenPGP certificate refers to what are commonly known as “OpenPGP public keys.” OpenPGP certificates are the combination of component public keys, identity components, binding self-signatures, and third-party certifications,
as discussed in the previous chapter (Certificates).

This chapter focuses on the corresponding counterpart to the elements of certificates: the private key material of component keys.

In this documentation, we treat the private key material as logically separate from the OpenPGP certificate. Operations that use private key material are typically managed by a separate subsystem. It is useful to view OpenPGP certificates and the associated private key material as related but distinct elements[1]:


[image: A diagram on a white background showing an OpenPGP certificate and a private keystore. Gray dotted lines connect the green public key symbols of the OpenPGP certificate to red dotted private key symbols in the private keystore.]
Fig. 11 An OpenPGP certificate, with the associated private key material handled in a separate subsystem.



In certain cases, an exception arises where the cryptographic private key material is integrated into the same OpenPGP framing format as the certificate. This is specifically done in the context of transferable secret keys (TSKs).



5.3. Transferable secret key format

Sometimes it is useful to handle OpenPGP certificates combined with private key material in the form of a transferable secret key (TSK) [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-transferable-secret-keys]. A TSK is a serialized format that combines OpenPGP certificate data with its connected private key material, stored in a single file.


[image: A box on a white background titled "transferable secret key." It resembles the figure depicting an OpenPGP certificate, except that in each component key box, below the green public key symbol,  the red-dotted private key symbol is also shown.]
Fig. 12 OpenPGP certificate with integrated private key material, as a TSK



The TSK format is particularly useful for backups of OpenPGP key material or transferring a key to a different computer[2]. For insights into the packet structure of a TSK, see the chapter Zooming in: Packet structure of private key material.


Terminology

Transferable secret keys are sometimes colloquially referred to as “OpenPGP private keys.”



Historically, the concept of TSKs, which combine all elements of an OpenPGP certificate with the associated private key material, has sometimes been conflated with OpenPGP private key operations. However, TSKs are primarily a format for storage and transport; it is generally considered inappropriate as a data structure for use in a private keystore. For further details, see Private keystores.



5.4. Protecting keys with passphrases

In the OpenPGP format, private key material can be optionally protected with a passphrase [https://en.wikipedia.org/wiki/Passphrase].

This method proves effective in scenarios where an unauthorized party obtains the OpenPGP key data but does not know the passphrase. Such a safeguard renders the key unusable to the attacker, effectively protecting it against unauthorized access or use.


5.4.1. Transforming passphrases into symmetric keys

When protecting private key material in OpenPGP, a symmetric key is derived from the user’s passphrase. This derived key is then used to protect the OpenPGP private key data.

To facilitate this, the OpenPGP standard defines a set of mechanisms known as string-to-key (S2K) [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-string-to-key-s2k-specifier]. S2K mechanisms are used to generate high-entropy symmetric encryption keys from lower-entropy passphrases, using a key derivation function (KDF) [https://en.wikipedia.org/wiki/Key_derivation_function].


[image: A diagram on a white background titled "Converting a passphrase into a symmetric key." On the left is a light-yellow box with dotted-yellow borders framing the phrase "correct horse battery staple." A dotted yellow line falls below the box to the term "passphrase." To the right of the box is a light-green arrow with green-dotted borders and the text "S2K mechanism (string-to-key). The arrow points to its right, where a yellow symmetric key symbol is shown.]
Fig. 13 Deriving a symmetric key from a passphrase



This symmetric key is used to protect the private key material it is in a passive state, for example, when stored on disk. To use a passphrase-protected OpenPGP private key, it is first decrypted using the symmetric key and then used for private key operations, remaining temporarily unlocked in memory.


5.4.1.1. Mechanisms for symmetric key generation

Over time, OpenPGP has evolved to include various S2K mechanisms for generating symmetric keys [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-string-to-key-s2k-types-reg], in line with advancements in cryptographic practices. Currently, two mechanisms are universally recommended:


	Argon2 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-argon2]: Introduced in OpenPGP version 6, Argon2 is a memory-hard mechanism designed to reduce the efficiency of brute-force attacks using specialized hardware.


	Iterated and Salted S2K [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-iterated-and-salted-s2k]: This mechanism is a staple with OpenPGP version 4 implementations.




A third mechanism is conditionally allowed for key generation. Decryption of private keys that use obsolete mechanisms is also allowed.

The RFC uses the terms “String-to-Key (S2K) specifier” or “String-to-Key (S2K) specifier type” for mechanisms used to generate a symmetric key from a passphrase.




5.4.2. Using symmetric keys for encryption

The generation of a symmetric key from a passphrase leads to its subsequent use in encrypting or decrypting OpenPGP private key material.

The RFC uses the term “String-to-Key Usage (S2K usage)” for the mechanism used to apply the symmetric key.

Different mechanisms are specified for encryption of OpenPGP private key material [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-secret-key-encryption].



5.4.3. Component-based passphrase protection

The OpenPGP mechanism for protecting private key material applies individually to each component key:


	Private key material for individual component keys within a single certificate can be protected with different mechanisms or passphrases.


	Individual component keys may be stored in unprotected form, while others are secured.




Commonly, when creating a certificate, the user’s software will use the same encryption mechanism and passphrase for all component keys. This might give the erroneous impression that all component private key material is encrypted in one, monolithic operation using a single passphrase.

However, variations are possible, such as when adding new subkeys to an existing certificate. In such cases, a user might choose a different passphrase, or the software might select a different encryption mechanism, for instance, for updated best practices.




5.5. OpenPGP cards for private keys

OpenPGP cards [https://en.wikipedia.org/wiki/OpenPGP_card] represent a category of hardware security devices specifically designed to handle OpenPGP private key material. These cards offer an alternative to directly managing private key material on the user’s computer.

Hardware security devices, such as OpenPGP cards, are designed to prevent the user’s computer from direct access to the private key material. The goal is to make it impossible to exfiltrate the key material, even when a remote attacker has fully compromised the user’s system.

OpenPGP cards adhere to an open specification detailed in the Functional Specification of the OpenPGP application on ISO Smart Card Operating Systems, Version 3.4.1 [https://gnupg.org/ftp/specs/OpenPGP-smart-card-application-3.4.1.pdf]. This specification has been implemented by multiple vendors across various devices, with several Free Software versions available, some of which are compatible with open hardware designs.

Effectively, the OpenPGP card specification outlines one model for a private keystore subsystem. OpenPGP cards do not store a full OpenPGP certificate. Instead, they have three distinct “key slots” designated for signing, decryption, and authentication. Each key slot stores the data of one component key[3], including its cryptographic private key material. Additionally, OpenPGP cards explicitly store the fingerprint of each component key within the corresponding key slot.

Notably, the practice of explicitly storing fingerprints on OpenPGP cards contrasts with the general OpenPGP format, where fingerprints of component keys are not stored but are instead dynamically calculated from the key data.



5.6. Private key operations

Although OpenPGP encompasses a broad range of cryptographic mechanisms, the set of operations performed within the core of a private keystore are simple and very limited.

Specifically, an OpenPGP private keystore implements two primitives:


	Given private key material whose algorithm supports decryption, it can decrypt a session key.


	Given private key material whose algorithm supports signing, it can calculate a cryptographic signature for a hash digest.




These essential operations require access only to the component keys and their associated private key material, specifically Secret-Key packets [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-secret-key-packet-formats]. Additional packets, such as binding signatures, are not required.



[1]
The distinction between certificates (which combine public key material and identity information) and private key material is similarly made in the data model of PKCS #11 [https://en.wikipedia.org/wiki/PKCS_11] cryptographic systems.



[2]
For example, in GnuPG, an OpenPGP key can be exported in (armored) TSK format using the following command: gpg --export-secret-key --armor <fingerprint>.



[3]
In the case of ECDH keys, the KDF parameters (hash function ID and a symmetric encryption algorithm ID) are not stored on the OpenPGP card. This is considered a flaw in the OpenPGP card specification. These missing parameters can be handled in two ways by OpenPGP software on the host computer: either by consulting a copy of the component key (e.g., by inspecting a copy of the certificate) or by deducing the missing KDF parameters from the stored OpenPGP fingerprint on the card.







            

          

      

      

    

  

    
      
          
            
  

6. OpenPGP Signatures

Signatures are a fundamental mechanism within OpenPGP. They provide the syntax for forming and interpreting comprehensive statements about certificates and their components, as well as for ensuring the integrity and authenticity of data.

Without signatures, keys would remain unassociated with any certificate or owner. Signatures are crucial for binding component keys and identity components into hierarchical certificates and for establishing the authenticity of messages.


6.1. Terminology: “cryptographic signatures” and “signature packets”

Within OpenPGP, the term signature can have two different meanings:


	Cryptographic signature: a sequence of bytes created by cryptographic keys, calculated according to a signature scheme.





[image: Depicts a box on white background. In the box, a green seal symbol with the word "sig" is shown on the left side, connected to the text "Cryptographic signature" by a black dotted line.]
Fig. 14 A cryptographic signature




	OpenPGP signature packets: Defined in the OpenPGP standard [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-signature-packet-type-id-2], these packets combine a raw cryptographic signature along with a type designation and additional metadata.





[image: Depicts a box on white background. In the top, the text OpenPGP signature packet is connected to a dotted box. Inside a yellow box is shown. It has the title "signature metadata" and two lines of content, reading "signature type" and "additional metadata". The yellow box is labeled with the green cryptographic signature symbol. The green symbol is labeled with a dotted line and the text "Cyptographic signature" to its right. On the left side of the box, connected with a dotted line, a small cion-sized representation of the yellow signature packet and its green cryptographic signature are shown. This introducedthe equivalence of the two representations.]
Fig. 15 An “OpenPGP Signature Packet”



In this document, “signature” will refer to OpenPGP signature packets.



6.2. Signature types in OpenPGP

The OpenPGP standard defines a set of Signature types [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-signature-types], each identified by a numerical signature type ID. Signature types define the purpose of a signature packet and how it should be interpreted.

Signature types can be predominantly classified in two ways:


	Signatures over data: These signatures are denoted by type IDs 0x00 for binary documents and 0x01 for canonical text documents. The signer uses these signatures to claim ownership, assert creation, or certify the immutability of the document.


	Signatures on components: These are signatures that are associated with component keys or identity components of a certificate.




Signatures on components are a complex topic, and we discuss them in depth in Signatures on components. They are grouped based on two criteria:


	the origin of the signature, distinguishing between a self-signature and a third-party signature


	the nature of the statement made by the signature, such as certifying an identity or binding component keys into a certificate





[image: Depicts a diagram, describing different types of OpenPGP signatures. On the right hand side a long yellow box with the title "Signature Types and Targets" is shown, which contains signature type IDs and their names (in gray boxes) and further yellow boxes, grouping other types of signature type IDs. At the top the signature type ID "0x02 Standalone" is shown. Below, another yellow box groups the "Signature Packet"s "0x50 Third-Party Confirmation" and "0x40 Timestamp". Another box groups types of signatures, that apply to "Data" packets "0x00 Binary Data" and "0x01 Canonical Text". Below, a box groups types of signatures, that apply to "Primary Key + User ID/ Attr. Packet"s. The type IDs "0x10 Generic Certification", "0x11 Persona Certification", "0x12 Casual Certification" and "0x13 Positive Certification" are shown together in one gray box and "0x30 Certification Revocation" in another. Another yellow box groups types of signatures, that apply to "Primary Key" packets "0x1F Direct-Key Signature" and "0x20 Key Revocation". The last box groups types of signatures, that apply to "Primary + Subkey" packets. "0x18 Subkey Binding" and "0x19 Primary Key Binding" are shown together in one gray box, "0x28 Subkey Revocation" in another. On the left hand side of the diagram shows gray boxes identifying different types of signatures, with the most basic being "OpenPGP Signature" on the far left. With arrows it points to further signature types ("Signature on Data", "Signature on Component") and several signature type IDs ("0x02", "0x50" and "0x40"). The signature type "Signature on Data" points to "0x00" and "0x01". The signature type "Signature on Component" points to two more specific signature types, namely "Third-Party" and "Self-Signature". "Third-Party" points at the group of "0x10", "0x11", "0x12" and "0x13", as well as "0x30" and "0x1F". "Self-Signature" points at the group of "0x10", "0x11", "0x12" and "0x13", as well as "0x30", "0x1F", the group of "0x18" and "0x19" and finally "0x28".]

Fig. 16 An overview of signature types in OpenPGP



This chapter will cover the overarching principles applicable to all OpenPGP signature types.

For more detail about specific types of signatures, see the chapters on Signatures over data and Signatures on components, respectively.



6.3. Structure of an OpenPGP signature packet

As outlined above, an OpenPGP signature is a composite data structure, which combines:


	Signature type ID: specifies the signature’s intended meaning, as detailed above


	Metadata: varies based, in part, on the signature type ID; mostly encoded as “subpackets” (see Signature subpackets)


	Raw cryptographic signature





[image: Depicts a diagram with the title "OpenPGP signature packet." A plain white rectangle with green-dotted borders is titled "Signature." Within that rectangle are three lines of text that reads "Signature over:", "Input data", and "Signature metadata." The latter text ("Signature metadata") is the the title for a yellow tag within which there are two lines of text that read "signature type" and "additional metadata" respectively. On the top right corner of the yellow tag, the green cryptographic signature symbol ("sig") is visible.]
Fig. 17 Structure and context of an OpenPGP signature packet



The input data packets differ between specific signature types. Also see Fig. 16.

For example:


	Binary data signature: The input data packet is a literal data packet.


	Subkey binding signature: The input data packets consist of a primary and a subkey packet.





6.3.1. Creating an OpenPGP signature packet

Creating an OpenPGP signature packet involves encoding a statement about a specific set of data within the packet.

The input data of a signature packet includes:


	Packets being signed: Typically one or more packets, though sometimes none, depending on the context. These are the packets to which the signature statement pertains.


	Data within the signature packet: This includes information that specifies the intent of the signature.




The input data is determined by the signature type and consists of the exact content that the signature statement addresses.

The signature packet consists of two parts:


	Statement definition: This part of the packet defines the meaning or intent of the signature.


	Cryptographic signature: This is the formal endorsement by the signer, created as follows:


	A hash digest is calculated from the input data.


	The cryptographic signature is then calculated for this hash digest.









[image: Depicts a complex diagram with white background and the title "Signature creation". On the top left side a box with black frame and white background reads "Input Data packets, One or more packets". Below it the symbol of a signature packet is shown (however, instead of the green signature symbol, only a circle with white background and dotted frame is shown). Both are connected (via green dotted arrows) to a green, right pointing arrow symbol with green dotted frame and the title "Hash mechanism". Text above the green arrow symbol reads "A hash digest is calculated from the input data packets and the signature metadata". The "Hash mechanism" arrow points at a box with white background and green frame, which reads "hash digest". At the top right corner of the diagram the symbol for a component key with both public and private key and the title "Signer private key" is shown. Both hash digest and component key symbol point to a large green arrow symbol, with green dotted frame, at the lower right corner of the diagram, using green dotted arrow lines. The large arrow symbol has the title "Signing mechanism" and text overlaid across it reads "A cryptographic signature is calculated over the hash digest, using the private key material of the signer.". It points at a cryptographic signature symbol at the bottom of the diagram. The cryptographic signature symbol is connected (via a green dotted arrow line) to the circle with white background and dotted green frame in the signature packet symbol.]
Fig. 18 Creating a signature in OpenPGP





6.3.2. Verifying an OpenPGP signature packet

Verifying an OpenPGP signature packet is similar to its creation, with some crucial differences that facilitate the verification by entities other than the signer.

The main differences:


	Access to public key: Unlike the creation process, which is exclusive to the signer, verification can be performed by anyone who has access to the public key of the signer.


	Use of signature verification mechanism:
After calculating the hash digest from the input data, a signature verification mechanism is employed. This mechanism uses the hash digest, the cryptographic signature from the signature packet, and the public key of the signer. Its purpose is to ascertain the cryptographic validity of the signature.





[image: Depicts a complex diagram with white background and the title "Signature verification". On the top left side a box with black frame and white background reads "Input Data packets, One or more packets". Below it the symbol of a signature packet is shown. Both are connected (via green dotted arrows) to a green, right pointing arrow symbol with green dotted frame and the title "Hash mechanism". Text above the green arrow symbol reads "A hash digest is calculated from the input data packates and the signature metadata". The "Hash mechanism" arrow points at a box with white background and green frame, which reads "hash digest". At the top right corner of the diagram the symbol for a component key with only public key and the title "Signer public key" is shown. Hash digest, component key symbol and the cryptographic signature symbol in the signature packet point to a large green arrow symbol, with green dotted frame, at the lower right corner of the diagram, using green dotted arrow lines. The large arrow symbol has the title "Signature verification mechanism" and text overlaid across it reads "A cryptographic signature is verified against the hash digest, using the public key of the signer.". It points at a success and fail symbol at the bottom of the diagram.]
Fig. 19 Verifying a signature in OpenPGP






6.4. Signature subpackets

In the OpenPGP protocol, signature subpackets enhance the expressiveness of a signature beyond what is conveyed by just the bare cryptographic signature and the signature type ID. These subpackets, introduced in RFC 2440 [https://datatracker.ietf.org/doc/html/rfc2440], are essential for embedding additional metadata within signature packets.

Signature subpackets serve as sub-elements within signature packets, providing extra context and meaning to a signature.
They are formatted as key-value pairs, where the keys are defined as subpacket type IDs [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-signature-subpacket-types-r] by the RFC. The RFC also provides the format and interpretation of the values.


6.4.1. Examples of signature subpackets


	The issuer fingerprint [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#issuer-fingerprint-subpacket] subpacket encodes the fingerprint of the component key that issued the signature.


	The key flags [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-key-flags] subpacket defines the capabilities that are assigned to a component key within a certificate.






6.4.2. Hashed and unhashed signature subpackets

Signature subpackets within OpenPGP can reside in one of two distinct areas of a signature packet, each serving a different purpose.


	Hashed area: Hashed subpackets are included in the hash digest of the signature and are thus covered by its cryptographic signature. They reliably express the signer’s intent.


	Unhashed area: Unhashed subpackets, conversely, are not included in the hash digest for the signature. They are thus not protected against tampering and can be used to retroactively add, change, or remove metadata in a signature packet without affecting its validity. They are primarily used for advisory purposes or in scenarios where the integrity of the subpacket content can be self-authenticated. An example is the issuer fingerprint subpacket, which can be validated through successful signature verification using the referenced issuer key.




The majority of signature subpackets are stored in the hashed area.

For detailed information and specifications, refer to Hashed vs. Unhashed Subpackets [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-hashed-vs-unhashed-subpacke] in the OpenPGP RFC.



6.4.3. Criticality of subpackets

In the OpenPGP protocol, each signature subpacket can be marked with a criticality flag. This flag plays a pivotal role in the interpretation and validation of the signature. When set, it instructs any receiving implementation encountering an unrecognized subpacket type to treat this as a significant error and to invalidate the signature.

This mechanism accounts for different OpenPGP implementations that may support only certain subsets of the standard. Moreover, it anticipates the evolution of the standard, including the addition of new subpacket types.

Consider a scenario where an implementation does not recognize a subpacket indicating signature expiration. Without understanding this concept, the implementation might erroneously accept an already expired signature. By marking the signature expiration time subpacket as critical, the creator of the signature ensures that any recipient who cannot process this subpacket will reject the signature as invalid.

For specific guidelines on which subpackets should be marked as critical, refer to the RFC sections 5.2.3.11 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-signature-creation-time] to 5.2.3.36 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-intended-recipient-fingerpr].






            

          

      

      

    

  

    
      
          
            
  

7. Signatures over data

In OpenPGP, a data signature guarantees the authenticity and, implicitly, the integrity of certain data. Typical use cases of data signatures include the authentication of software packages and emails.

“Authenticity” in this context means that the data signature was issued by the entity controlling the signing key material. However,
it does not automatically signal if the expected party indeed controls the signer certificate. OpenPGP does offer mechanisms for strong authentication, connecting certificates to specific identities. This verifies that the intended communication partner is indeed associated with the cryptographic identity behind the signature[1].

Data signatures can only be issued by component keys with the signing key flag [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-key-flags].

Note that data signatures are distinct from Signatures on components, which are used to form and maintain certificates, as well as to certify identities on certificates.


7.1. Signature types

OpenPGP data signatures use one of two signature types:


	Binary signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#sigtype-binary] (type ID 0x00): This is the standard signature type for binary data and is typically used for files or data streams. Binary signatures are calculated over the data without any modifications or transformations.


	Text signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-signature-of-a-canonical-te] (type ID 0x01): Used for textual data, such as email bodies. When calculating a text signature, the data is first normalized by converting line endings into a canonical form (<CR><LF>). This approach mitigates issues caused by platform-specific text encodings. This is especially important for detached and cleartext signatures, where the  message file might undergo re-encoding between the creation and verification of the signature.




Data signatures are generated by hashing the message content along with the metadata in the OpenPGP signature packet, and calculating a cryptographic signature over that hash. The resulting cryptographic signature is stored in the signature packet.

Data signatures manifest in three distinct forms, which will be detailed in the subsequent section.



7.2. Forms of OpenPGP data signatures

OpenPGP data signatures can be applied in three distinct forms[2]:


	Detached: The OpenPGP signature exists as a separate entity, independent of the signed data.


	Inline: Both the original data and its corresponding OpenPGP signature are encapsulated within an OpenPGP message.


	Cleartext signature: A plain text message and its OpenPGP signature coexist in a combined text format, preserving the readability of the original message.






7.3. Detached signatures

A detached signature is produced by calculating an OpenPGP signature over the data intended for signing. The original data remains unchanged, and the OpenPGP signature is stored separately, e.g. as a standalone file. A detached signature file can be distributed alongside or independent of the original data. The authenticity and integrity of the original data file can be verified by using the detached signature file.

This signature format is especially useful for signing software releases and other files where it is imperative that the content remains unaltered during the signing process.



7.4. Inline signatures

An inline signature joins the signed data and its corresponding data signature into a single OpenPGP message.

This method is commonly used for signing or encrypting emails. Most email software capable of handling OpenPGP communications typically uses inline signatures.

For more details and internals, see Internals of inline signed messages.



7.5. Cleartext signatures

The Cleartext Signature Framework (CSF) in OpenPGP accomplishes two primary objectives:


	maintaining the message in a human-readable cleartext format, accessible without OpenPGP-specific software


	incorporating an OpenPGP signature for authentication by users with OpenPGP-compatible software





7.5.1. Example

The following is a detailed example of a Section 28.3 signature:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

hello world
-----BEGIN PGP SIGNATURE-----

wpgGARsKAAAAKQWCZT0vBCIhBtB7JOyRoU3SQKwtU+bIqeBUlJpBIi6nOFdu0Zyu
o9yZAAAAANqgIHAzoRTzu/7Zuxc8Izf4r3/qSCmBfDqWzTXqmVtsSBSHACka3qbN
eehqu8H6S0UK8V7yHbpVhExu9Hu72jWEzU/B0h9MR5gDhJPoWurx8YfyXBDsRS4y
r13/eqMN8kfCDw==
=Ks9w
-----END PGP SIGNATURE-----





This signature consists of two parts: a message (“hello world”) and an ASCII-armored OpenPGP signature. The message is immediately comprehensible to a human reader, while the signature block allows for the message’s authenticity verification via OpenPGP software.



7.5.2. Use case

Cleartext signatures combine the advantages of both detached and inline signatures:


	Self-contained format: Cleartext signatures enable the message and its signature to be stored as a single file.


	Human readability: The message within a cleartext signature remains accessible in a plain text format. This eliminates the need for specialized software to read the message content.




These features are particularly beneficial in scenarios where signed messages are managed semi-manually and where existing system infrastructure offers limited or no native support for OpenPGP in the workflow[3].



7.5.3. Text transformations for cleartext signatures

The cleartext signature framework includes specific text normalization procedures to ensure the integrity and clarity of the message:


	Escaping dashes: The framework implements a method of dash-escaped text [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-dash-escaped-text] within the message. Dash-escaping ensures that the parser correctly distinguishes between the armor headers, which are part of the signature’s structure, and any lines in the message that happen to start with a dash.


	Normalization of line endings: Consistent with the approach for any other text signature, a cleartext signature is calculated on the text with normalized line endings (<CR><LF>). This ensures that the signature remains valid regardless of the text format of the receiving implementation.






7.5.4. Pitfalls

Despite their widespread adoption, cleartext signatures have their limitations and are sometimes viewed as a “legacy method”[4]. The RFC details the pitfalls of cleartext signatures [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-issues-with-the-cleartext-s], such as incompatibility with semantically meaningful whitespace, challenges with large messages, and security vulnerabilities related to misleading Hash header manipulations. Given these issues, safer alternatives like inline and detached signature forms are advised.



[1]
Other signing solutions, like signify [https://flak.tedunangst.com/post/signify], focus on pure signing without strong authentication of the signer’s identity.



[2]
These three forms of signature application align with GnuPG’s --detach-sign, --sign, and --clearsign command options.



[3]
An illustrative example is the workflow adopted by Arch Linux to certify User IDs of new packagers. This process relies on cleartext signed statements from existing packagers [https://gitlab.archlinux.org/archlinux/archlinux-keyring/-/blob/master/.gitlab/issue_templates/New%20Packager%20Key.md?ref_type=heads&amp;plain=1#L33-46]. These signed statements are stored as attachments in an issue tracking system for later inspection. The advantage of this approach lies in the convenience of having the message and signature in a single file, which simplifies manual handling. Based on the vouches in these cleartext signed messages and an email confirmation from the new packager [https://gitlab.archlinux.org/archlinux/archlinux-keyring/-/wikis/workflows/verify-a-packager-key], the main key operators can issue OpenPGP third-party certifications.



[4]
https://lists.gnupg.org/pipermail/gnupg-devel/2023-November/035428.html








            

          

      

      

    

  

    
      
          
            
  

8. Signatures on components

This chapter examines OpenPGP signatures associated with certificate components, applying to:


	component keys, encompassing primary keys and subkeys


	identity components, namely User IDs and User attributes




Signatures on components are used to construct and maintain certificates, and to model the authentication of identities.

This chapter expands on topics introduced in the Certificates chapter.


8.1. Self-signatures vs third-party signatures

Component signatures in OpenPGP are categorized into two distinct types:


	self-signatures, which are issued by the certificate holder  using the certificate’s primary key


	third-party signatures, which are issued by an external entity, not the certificate holder





8.1.1. Self-signatures

Self-signatures are fundamental in creating and managing OpenPGP certificates. They bind the various components of a certificate into one combined data structure and facilitate the certificate’s life-cycle management.

Life-cycle management operations include:


	binding additional components to a certificate


	modifying expiration time or other metadata of components


	revoking, and thus invalidating, components or existing self-signatures




Self-signatures are issued by the certificate’s owner using the certificate’s primary key.


Note

No key flag [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-key-flags] is required to issue self-signatures. An OpenPGP primary key can issue self-signatures by default.





8.1.2. Third-party signatures

Third-party signatures are pivotal in OpenPGP for decentralized authentication, forming the basis of the Web of Trust. They encode authentication-related statements about certificates and linked identities, establishing trustworthiness of identity claims.

Third-party signatures are used to make specific statements:


	certifying identity claims


	delegating authentication decisions


	revoking, and thus invalidating, prior third-party signature statements





Note

The certify others key flag [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-key-flags] (0x01) is required to issue third-party signatures. By convention[1], only the certificate’s primary key can hold this key flag.





8.1.3. Distinct functions of self-signatures and third-party signatures

The meaning of an OpenPGP signature depends significantly on its issuer. Self-signatures and third-party signatures, even when of the same signature type [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-signature-types], serve distinct functions. For example:


	Certifying self-signatures (type IDs 0x10 - 0x13) bind a User ID to a certificate.


	Third-party signatures of the same type IDs endorse the authenticity of a User ID on another user’s certificate.




In another instance:


	When issued as a self-signature, a direct key signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-direct-key-signature-type-i] sets preferences and advertises features applicable to the entire certificate.


	When issued by a third party, especially when it carries a trust signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-trust-signature] subpacket, a similar direct key signature delegates trust to the signed certificate. This may designate the signed certificate as a trust anchor within the issuer’s Web of Trust.







8.2. Self-signatures in certificate formation and management

Self-signatures play a crucial role in forming and managing the structure of OpenPGP certificates. These act as binding signatures, joining components and embedding metadata.

Internally, an OpenPGP certificate is essentially a series of packets strung sequentially. When a certificate is stored in a file format known as a transferable public key [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-transferable-public-keys], packets can be easily added or removed.

To safeguard against unauthorized additions or alterations of components, OpenPGP uses cryptographic signatures. These validate that all components, such as subkeys or identity components, were linked to the OpenPGP certificate by its owner, using the primary key. While anyone can still store unrelated elements to a certificate dataset, OpenPGP implementations will reject them if they lack a valid cryptographic connection with the certificate.


Note

Conversely, omissions of packets by third parties can easily occur when handling an OpenPGP certificate dataset. This could pose a challenge, for example, when an attacker deliberately omits revocation packets. Without access to an alternative, complete certificate source, recipients might not detect these omissions.



However, there are legitimate instances in which third parties add “unbound” packets (i.e., not signed by the certificate’s owner) to a certificate:


	Third-party certifications are often stored within the packet data of the certificate to which they are related. This is a standard practice that provides convenience for users by allowing easy access to all relevant certifications. (See Third-party certification flooding for discussion of a related pitfall.)


	OpenPGP software may locally add unbound identity data to a certificate.





8.2.1. Binding subkeys to a certificate

Subkeys are linked to OpenPGP certificates via a subkey binding signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#sigtype-subkey-binding] (type ID 0x18). This signature type indicates the association of the primary key with the subkey.

A subkey binding signature binds a subkey to a primary key, and it embeds metadata into the signature packet. Once generated, the subkey binding signature packet is stored in the certificate directly after the subkey it binds.

Subkeys designated for signing purposes, identified by the signing key flag [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-key-flags], represent a unique category and are handled differently. See Section 8.2.2.


[image: Depicts a diagram on white background with the title "Subkey binding signature". At the top left the symbol of a primary component key with certification capability is shown. At the bottom left the symbol of a component key with encryption capability is shown. The primary component key points at the lower component key with a full green arrow line. In the middle of the connection the small symbol of a signature packet is shown. On the right side of the diagram a detailed version of the signature packet can be found in a box with the title "Subkey binding signature". The text reads "Signature over Primary key, Subkey" and the box with "Signature metadata" contains the list "signature creation time", "key expiration time", "key flags" and "issuer fingerprint". The primary component key points at the detailed signature packet with a dotted green arrow line and the text "Primary key creates a subkey binding signature to bind the subkey to the primary key".]
Fig. 20 Linking an OpenPGP subkey to the primary key with a binding signature



Metadata for the subkey, such as the key expiration time [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#key-expiration-subpacket] and capabilities set by key flags [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#key-flags], are included in subpackets within the subkey binding signature packet.


Note

The validity of a subkey is intrinsically linked to that of the primary key. An expired primary key renders any associated subkey invalid, regardless of the subkey’s own expiration setting.

Legally, a subkey may not have a specified expiration time. In such cases, its expiration aligns implicitly with that of the primary key. Additionally, the creation time of a subkey must always be more recent than that of the primary key.





8.2.2. Special case: Binding signing subkeys

Binding subkeys that possess the signing key flag to a certificate represents a unique scenario. While similar to the binding process of other subkeys, there is an additional, critical requirement: mutual association.

That is, to bind a signing-capable subkey to a primary key, it is insufficient that the “primary key wants to be associated with the subkey.” The subkey must explicitly signal that it “wants to be associated with the primary key.”

This mutual binding is crucial for security. Without it, an individual (e.g., Alice) could falsely claim a connection to another person’s (e.g., Bob’s) signing subkey.
Alice could thus claim to have issued signatures which were actually issued by Bob.
To prevent such scenarios, where an attacker might wrongfully “adopt” a victim’s signing subkey, a dual-layer of signatures is used:


	the subkey binding signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#sigtype-subkey-binding] (type ID 0x18), which is issued by the certificate’s primary key


	the primary key binding signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#sigtype-primary-binding] (type ID 0x19), created by the subkey itself. This is informally known as an embedded “back signature,” because the subkey’s signature points back to the primary key.





[image: Depicts a diagram on white background with the title "Subkey binding signature for signing subkeys". At the top left the symbol of a primary component key with certification capability is shown. At the bottom left the symbol of a component key with signing capability is shown. The primary component key points at the lower component key with a full green arrow line. In the middle of the connection the small symbol of a signature packet is shown. On the right side of the diagram a detailed version of the signature packet can be found in a box with the title "Subkey binding signature". The text reads "Signature over Primary key, Subkey" and the box with "Signature metadata" in it contains the list "signature creation time", "key expiration time", "key flags" and "issuer fingerprint". Within the signature metadata a box with a green dotted frame extends the list with an inlined signature packet with the title "Embedded Signature; Primary key binding". Its inner text reads "Signature over Primary Key, Signing Subkey". The signature metadata area of this embedded signature holds the list "signature creation time" and "issuer fingerprint". The cryptographic signature symbol overlaps both metadata and general section of the embedded signature. From the signing component key a green dotted arrow line points to the embedded signature in the subkey binding signature with the text "Signing key creates a primary binding signature to associate itself with the primary key" ("primary binding signature" in bold). At the top of the diagram, the primary component key points at the detailed signature packet with a dotted green arrow line and the text "Primary key creates a subkey binding signature to bind the subkey to the primary key".]
Fig. 21 Linking an OpenPGP signing subkey to the primary key with a binding signature, and an embedded primary key binding signature



The back signature signifies the mutuality of the subkey’s association with the primary key and is embedded as subpacket data within the subkey binding signature, reinforcing the authenticity of the binding.



8.2.3. Binding identities to a certificate

Self-signatures also play a vital role in binding identity components, such as User IDs or User Attributes, to an OpenPGP certificate.

To bind the User ID Alice Adams <alice@example.org> to her OpenPGP certificate (AAA1 8CBB 2546 85C5 8358 3205 63FD 37B6  7F33 00F9 FB0E C457 378C D29F 1026 98B3), Alice would use a certification signature.

There are four types of certifying self-signature. The most commonly used type for binding User IDs is the positive certification [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#sigtype-positive-cert] (type ID 0x13). Alternatively, type 0x10, 0x11, or 0x12 might be used. This binding signature must be issued by the primary key.

The certifying self-signature packet – calculated over the primary key, User ID, and metadata of the signature packet – is added to the certificate, directly following the User ID packet.


[image: Depicts a diagram on white background with the title "User ID binding signature". At the top left the symbol of a primary component key with certification capability is shown. At the bottom left the symbol of a User ID reads "Alice Adams <alice@example.org>". The primary component key points at the User ID with a full green arrow line. In the middle of the connection the small symbol of a signature packet is shown. On the right side of the diagram a detailed version of the signature packet can be found in a box with the title "User ID binding signature". The text reads "Signature over Primary key, User ID" and the box with "Signature metadata" in it contains the list "signature creation time", "key expiration time", "primary User ID flag", "algorithm preferences", "key expiration time (primary key)" and "key flags (primary key)". At the top of the diagram, the primary component key points at the detailed signature packet with a dotted green arrow line and the text "Primary key creates a User ID binding signature to associate the User ID with the primary key".]
Fig. 22 Linking a User ID to an OpenPGP certificate





8.2.4. Adding global metadata to a certificate

The signatures that bind subkeys and identity components to a certificate serve dual purposes: linking components to the certificate and adding metadata to components.

While it is essential to add metadata that pertains to the entire certificate, this does not require binding any component to the certificate. In this case, the signature mechanism is used just to associate metadata with the certificate globally.

Two signature types can perform this function:


	direct key signature on the primary key


	primary User ID binding signature




The types of metadata typically associated with the certificate through these methods include:


	key expiration


	key flags (capabilities)


	features


	algorithm preferences signaling





8.2.4.1. Direct key signature

A direct key signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-direct-key-signature-type-i] serves as the preferred mechanism [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#section-5.2.3.10-9] in OpenPGP v6 for defining metadata for the entire certificate, by associating it with the primary key.



8.2.4.2. Self-signature binding to primary User ID

In OpenPGP v4, another mechanism was often used for metadata management: integrating global certificate metadata within a User ID binding signature. This is specifically evident in the binding signature of the primary User ID [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-primary-user-id] of the OpenPGP certificate.

This method results in the primary User ID binding signature containing a mix of metadata: some specific to that User ID and some applicable to the certificate globally.

Given the widespread adoption of this mechanism in existing OpenPGP certificates, it is crucial that OpenPGP applications recognize and manage it.




8.2.5. Revocation self-signatures: Invalidating certificate components

Revocation self-signatures represent an important class of self-signatures, used primarily to invalidate components or retract prior signature statements.

There are several types of revocation signatures, each serving a specific purpose:


	A key revocation signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-key-revocation-signature-ty] (type ID 0x20) marks a primary key as revoked.


	A subkey revocation signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-subkey-revocation-signature] (type ID 0x28) invalidates the binding of a subkey.


	A certification revocation [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-certification-revocation-si] (type ID 0x30) invalidates the binding of a User ID or User Attribute.




Common scenarios for using revocations include marking certificates or individual subkeys as unusable (e.g., when the private key has been compromised or replaced) or declaring User IDs as no longer valid.


Note

OpenPGP certificates act as append-only data structures in practice. Once elements of a certificate are published, they cannot be removed from key servers or third-party OpenPGP systems. Implementations usually merge all available components and signatures.

Revocations are used to mark components or signatures as invalid.



Note: certification signatures can be made irrevocable [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-revocable].


8.2.5.1. Hard vs soft revocations

Revocation signatures often include a Reason for Revocation subpacket [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-reason-for-revocation], with a code specifying why the revocation was issued. This code determines whether the revocation is considered soft or hard.


	Soft revocation: This is typically used for graceful or planned invalidation of components, such as retiring or updating components. It invalidates the component from the revocation signature’s creation time, but earlier uses remain valid. Soft revocations can be reversed with a new self-signature.


	Hard revocation: This irrevocably invalidates the component, affecting all past and future uses. It is typically used to signal compromise of secret key material.





Note

A revocation signature packet lacking a Reason for Revocation subpacket is interpreted as a hard revocation.







8.3. Authentication and delegation in third-party signatures

Third-party signatures in OpenPGP primarily encode authentication statements for identities and delegate trust decisions. These signatures can be manually inspected or processed as machine-readable artifacts by OpenPGP software, which evaluates the authenticity of certificates based on user-specified trust anchors.


8.3.1. Certifying identity components

When a signer issues a certifying signature on an identity, it indicates a verified link between the identity and the certificate. That is, the signer vouches for the identity claim.

For example, Alice can vouch that Bob’s User ID Bob Baker <bob@example.com> is legitimately linked with his certificate BB28 9FB7 A68D BFA8 C384 CCCD E205 8E02  D9C6 CD2F 3C7C 56AE 7FB5 3D97 1170 BA83, by creating a certification signature. Bob can then distribute Alice’s certifying signature<Certification> as part of his certificate.

Other users may or may not decide to rely on Alice’s statement to determine the authenticity of Bob’s certificate.



8.3.2. Trust signatures: delegating authentication

OpenPGP uses trust signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#trust-signature-subpacket] subpackets to delegate authentication decisions, designating the recipient certificate as a “trusted introducer” (or a trust anchor) for the user. This includes specifying trust depth (or level) for transitive delegations and quantifying trust with numerical values, indicating the extent of reliance on the introducer’s certifications.

Trust signature subpackets are applicable in third-party signatures, more specifically:


	identity certification signatures (type ID 0x10 - 0x13)


	direct key signatures [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-direct-key-signature-type-i] (type ID 0x1F)





8.3.2.1. Trust depth/level

The “trust depth” (or level) in OpenPGP signifies the extent of transitive delegation within the authentication process. It determines how far a delegation can be extended from the original trusted introducer to subsequent intermediaries. Essentially, a certificate with a trust depth of more than one acts as a “meta introducer,” facilitating authentication decisions across multiple levels in the network.

A trust depth of 1 means relying on certifications made directly by the trusted introducer. The user’s OpenPGP software will accept certifications made directly by the introducer for authenticating identities.

However, when the trust depth is set higher, it implies a chain of delegation may extend beyond the initial introducer. The user’s software will recognize and accept certifications made not only by the primary introducer but also by other intermediaries whom the primary introducer designated as trusted introducers.

This allows for a more extensive network of trusted certifications, enabling a broader and more interconnected Web of Trust.



8.3.2.2. Trust amounts

The “trust amount,” with a numerical value ranging from 0 to 255, quantifies the degree of reliance on a delegation.

A higher value indicates greater degree of reliance. This quantification aids OpenPGP software in determining an aggregate amount of reliance, based on combined certifications from multiple trusted introducers.



8.3.2.3. Limiting delegation scope

When using trust signature subpackets, a delegation can be limited to identities that match a regular expression [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#regex-subpacket].

With this mechanism, for example, it is possible to delegate authentication decisions only for User IDs that match the email domain of an organization.




8.3.3. Web of Trust: Decentralized trust decisions

The Web of Trust in OpenPGP is a trust model that facilitates authentication decisions through a network of certifications and delegations. It is characterized by a so-called strong set [https://en.wikipedia.org/wiki/Web_of_trust#Strong_set], which refers to a group of certificates that are robustly interconnected via third-party certifications.

In this model, users independently delegate authentication decisions, choosing whose certification to rely on. This delegation is based on the certificates and third-party signatures available to them, with their OpenPGP software applying the Web of Trust mechanism to discern the reliability of each certificate for an identity.

The OpenPGP RFC doesn’t specify exactly how Web of Trust calculations are performed. It only defines the data formats on which these calculations can be performed.



8.3.4. Revoking third-party signatures

To reverse a previously issued third-party signature, the issuer can generate a certification revocation signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-certification-revocation-si] (type ID 0x30). The revocation must be issued by the same key that created the original signature or, in deprecated practice, by a designated Revocation Key [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-revocation-key].



[1]
Most current implementations assume that only the primary key may hold the certify others key flag, although this is not specified in the RFC.








            

          

      

      

    

  

    
      
          
            
  

9. Signature verification

Signature verification in the OpenPGP protocol is a complex process.
Many factors influence the validity of a signature.

Firstly, its expiration time: A signature can be valid at one point in time and expired a second later.

Signatures can be invalid due to the absence or presence of other signatures (e.g., revocations).
Some signatures can be verified standalone, while others require the verification of a chain-like structure of signatures, mostly within the issuer’s certificate.


9.1. When are signatures valid?

As a necessary condition, a valid signature must be cryptographically correct. This means that both the signature and its signed input data must be intact.

However, there is a difference between signature correctness and validity:

A signature may be cryptographically correct, but still not qualify as a valid signature.
Put mathematically, the set of valid signatures is a subset of the set of correct signatures.

The validity of a correct signature is additionally constrained by a number of conditions:


	Well-formedness: Signature packets need to be well-formed. This means that they must contain suitable signature metadata (this includes: the required signature subpackets must be present in the proper subpacket area). The signature metadata must not contain unknown critical subpackets or unknown critical notations[1]. Some implementations additionally apply a policy that constrains accepted hash algorithms, cryptographic algorithms, and key strengths.


	Temporal validity: Most signatures have a limited validity period, constrained by the signature creation- and expiration time.


	Qualification: Furthermore, some signatures need to be qualified by other valid signatures in order to be considered valid. This is especially the case with signatures created by dedicated signing subkeys, where, in addition to the signature itself, the subkeys binding signature(s) must be verified.


	Revocation: Lastly, signatures can be invalidated by revocations.






9.2. Well-formedness of signatures

There are a number of criteria that a signature must fulfill to be considered well-formed:


	Each signature MUST have a signature creation time subpacket in its hashed subpacket area. A signature with only an unhashed creation time - or none at all - is not well-formed.


	The signature cannot be older than the component key that issued it.


	Analogously, a signature with a creation time in the future needs to be rejected as well.


	A well-formed signature needs to carry an Issuer Fingerprint subpacket, or an Issuer KeyID subpacket. It is generally recommended to place Issuer subpackets in the hashed area of the signature, but a receiving implementation may also accept signatures which only contain unhashed copies of these subpackets.


	A signature disqualifies as well-formed if it contains subpackets which are marked as critical, but unknown to the receiving implementation. Unknown subpackets which are not marked as critical do not have an effect on whether the signature is well-formed.


	The same applies to notations. Unknown notations that are marked as critical render the signature malformed.






9.3. Temporal validity

A signature is valid only for a constrained period of time:


	The creation time of the signature acts as a lower bound for the validity. A signature only becomes valid at its creation time. Hard revocation signatures are an exception: They are by definition valid at any point in time, and have no lower temporal bound.


	If present, the signature’s expiration time acts as a natural upper bound for its validity.




When checking a signature for validity, a reference time is used. The validity of the signature is evaluated at that reference time.

The reference time can be:


	the current time during validation, or


	another point in time that is significant to the signature that is validated. For example, when checking the signature of an email, the reference time might be the signature creation time, or the time of receipt of the email.




For the signature to qualify as valid, it needs to be in effect. In other words, the reference time must fall into the period between signature creation and signature expiration.

The same reference time must be used when verifying required qualifying signatures, if any.



9.4. Self-qualifying and non-self-qualifying signatures

Some signatures can be verified on their own, while others require the verification of additional signatures on the issuer certificate. We will call the former category self-qualifying signatures.

Typically, self-qualifying signatures are self-signatures, meaning signatures issued by an OpenPGP primary key for the components in its certificate.

Examples for self-qualifying signatures are:


	direct key self-signatures (0x1F),


	User ID self-certifications (0x10-0x13),


	key-revocation self-signatures (0x20),


	certification revocation self-signatures (0x30) or


	self-signatures used to bind or revoke subkeys (0x18, 0x19, 0x28).




Examples for signatures which are not self-qualifying are:


	data signatures (0x00, 0x01) and


	signatures issued over third-party certificates, such as:


	third-party direct key signatures (0x1F),


	third-party key-revocations (0x20),


	third-party certification (0x10-0x13), or


	third-party certification revocation signatures (0x30).










9.5. Signature qualification

To verify non-self-qualifying signatures, it is necessary to look at more than just the signature itself.

This is required because the issuing component key needs to be qualified to create such a signature (e.g., because a specific capability key flag is required). The qualification typically emerges via a self-signature on the key itself.

In short, a chain of valid signatures from the signature itself to the primary key of the issuer certificate needs to be established.

For example, a subkey may issue a data signature over an email body only if that subkey is validly bound to the issuer’s certificate via a subkey binding signature. That binding signature needs to contain a key flags subpacket that marks the subkey as signing capable.
Similarly, certification signatures over third-party certificates require the issuer key to carry a valid self-signature with the certification key flag.

Self-qualifying signatures have no such limitations.

For example, a certificate consisting only of a primary key and a single key-revocation self-signature contains everything needed to verify the revocation, as key-revocation self-signatures are self-qualifying.
This construct is referred to as a revocation certificate [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-openpgp-v6-revocation-certi].

On the other hand, to verify a data signature over a text document, an implementation needs to verify not only the data signature itself, but also the binding signature (and back-signature) of the signing subkey which qualifies the signing subkey.


[image: Depicts a diagrammatic representation of a certificate and a data signature. Arrows between the primary key and other components of the certificate show, how signatures bind the certificate together. In this example, they form a tree of signatures, which all need to be verified in order for the data signature to be valid.]

Fig. 23 Tree of signatures that qualify a data signature





9.6. Revocations

A signature can be disqualified by the presence of a revocation signature.

Revocations can be limited in scope, e.g., a subkey-revocation signature only revokes a single subkey.
Moreover, revocations can also be constrained to a certain validity period by including a soft revocation reason and expiration time in the revocation signature.



[1]
Note that this implies that a signature might be considered valid by one implementation and be rejected by another, based on the set of subpackets and notations each implementation is aware of.







            

          

      

      

    

  

    
      
          
            
  

10. Encryption

Encryption [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-confidentiality-via-encrypt] is one of the core facilities of OpenPGP. It provides confidentiality.

For an in-depth, packet-level view of encrypted data in OpenPGP, see Zooming in: Packet structure of encrypted data.


10.1. Terminology



	Term

	Description





	SEIPD Packet

	Symmetrically Encrypted, Integrity Protected Data packet; contains the encrypted message payload



	SKESK Packet

	Symmetric-Key Encrypted Session Key packet; contains or provides a passphrase-encrypted session key



	PKESK Packet

	Public-Key Encrypted Session Key packet; contains a session key encrypted using an asymmetric public key



	Session Key

	Symmetric encryption key, which is either used directly as - or to derive - the message key



	Message Key

	Symmetric encryption key used to encrypt the contents of the SEIPD packet








10.2. High-Level overview of the message encryption process

Encryption in OpenPGP is performed in two distinct steps:


	Symmetric encryption: The plaintext is encrypted based on a (secret) symmetric key, the session key [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-confidentiality-via-encrypt]. The (potentially large) ciphertext only needs to be stored once, even if it is sent to multiple recipients. All recipients get access to the same shared session key to decrypt the message.


	Session key transmission: For each recipient of the message, a packet that contains a protected copy of the session key is generated.


	Usually, the session key is encrypted to a public encryption component key of the recipient.


	Alternatively - or additionally - the session key may also be encrypted using a passphrase. This is a specialized and less commonly used mode of operation that doesn’t require OpenPGP certificates.









Note

Above, “plaintext” means one of:


	Literal Data packet,


	Compressed Data packet or a


	signed message.




A signed message, in turn, is a packet sequence that either


	resembles an inline-signed message (a Literal Data packet sandwhiched between one or more One-Pass-Signature and their respective Signature packets), or a


	prefixed-signed message (one or more Signature packets followed by a single Literal Data packet).








10.3. Encryption mechanism versions

OpenPGP’s encryption mechanisms have evolved over time. The RFC shows an overview of encryption mechanisms [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#section-10.3.2.1], and how they may be combined.

Two generations of encryption mechanisms are currently relevant in OpenPGP, and will co-exist for the foreseeable future.

The main difference between these lies in the symmetric part of the encryption mechanism, represented by versions 1 and 2 of the Symmetrically Encrypted and Integrity Protected Data packets (abbreviated as “SEIPD”). The two versions use different mechanisms to provide non-malleability. More on these below.

Older, legacy encryption mechanisms exist in OpenPGP. However, those must not be used for encryption anymore. Messages encrypted using these legacy mechanisms may still be decrypted, although with caution. For more information, see the decryption chapter.

SEIPD packets are used in combination with two mechanisms that store session keys:


	Public-Key Encrypted Session Key [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-public-key-encrypted-sessio] (PKESK) packets and


	Symmetric-Key Encrypted Session Key [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#skesk] (SKESK) packets.




The typical combination of mechanisms for encryption in OpenPGP is a hybrid cryptosystem, consisting of one or more Public-Key Encrypted Session Key [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-public-key-encrypted-sessio] packets (PKESK), followed by a Symmetrically Encrypted Integrity Protected Data [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-symmetrically-encrypted-int] (SEIPD) packet.

In this combination, an asymmetric cryptographic mechanism is used to protect a session key inside PKESK packets. The session key, in turn, is used to protect the plaintext using symmetric-key encryption in a SEIPD packet.



10.4. Encrypted session keys: PKESK, SKESK

Encrypted session key (ESK) packets are a family of two mechanisms for securing symmetric key material:


	PKESK [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-public-key-encrypted-sessio]: Uses asymmetric OpenPGP key material to protect a session key, and


	SKESK [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-symmetric-key-encrypted-ses]: Uses passphrases to protect the symmetric key material, instead of OpenPGP asymmetric key material (this is less commonly used).




An arbitrary number of PKESKs and SKESKs can be used in the same message. It is also possible to mix the two, resulting in a message which can be decrypted using either one of the designated OpenPGP keys or any of the passphrases used to encrypt the message. This is useful to make a message available to a number of known recipients, with the option to provide the passphrase to future recipients.


10.4.1. PKESK: Session key encrypted to an asymmetric OpenPGP key

To encrypt an OpenPGP message for a recipient, the session key is encrypted to the recipient’s public key. The resulting encrypted session key is packed into a PKESK packet, which holds essential metadata, like an identifier of the recipients encryption (sub)-key.

This procedure is repeated for each recipient of the message, and all resulting PKESK packets are prepended to the SEIPD packet (see below) containing the actual message.

Typically, the sender would also include themselves as a recipient, to be able to decrypt the message with their own key at a later point in time.



10.4.2. SKESK: Session key encrypted to a passphrase

As an alternative (or augmentation) to PKESK packets, a message can also be encrypted to a symmetric passphrase. This is done using a SKESK packet, which uses an S2K mechanism to derive a symmetric key from a passphrase. This key is either used directly as the session key, or more commonly, used as a key-encapsulation-key (KEK) to encrypt the session key.

Also see https://flowcrypt.com/docs/guide/send-and-receive/send-password-protected-emails.html

As for protection of secret key material, it is important to choose appropriate S2K parameters when generating an SKESK packet.
The specification currently recommends to use either Iterated and Salted S2K or Argon2.




10.5. Symmetric encryption of data, SEIPD

Symmetrically Encrypted Integrity Protected Data (SEIPD) packets represent the symmetric aspect of OpenPGP’s encryption mechanism. The function of these packets is entirely independent of (asymmetric) OpenPGP keys.

A SEIPD packet contains the actual payload: the ciphertext of the encrypted message. For a large encrypted message, the SEIPD packet will also be large.


Note

SEIPD packets are the successor to the Symmetrically Encrypted Data [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-symmetrically-encrypted-dat] packet, which is obsolete.



Two versions of the SEIPD packet (differentiated by the version number) have been specified. Version 1, introduced in RFC4880, is used in OpenPGP v4 while SEIPD version 2 was introduced with OpenPGP v6. Both versions can be used with either OpenPGP v4 or v6 keys, although OpenPGP v4 keys need to announce support for SEIPD version 2 via the Feature signature subpacket.

When decrypted, the data contained in a SEIPD packet forms an OpenPGP message [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-openpgp-messages]. That is, the decrypted data consists of a series of OpenPGP packets.

In both versions of SEIPD, the decryptor must have obtained a session key in a previous step, before processing the SEIPD packet. Using this session key, the decryptor can decrypt the SEIPD packet and process the plaintext data that it contains.


10.5.1. v1 SEIPD, based on MDC

The version 1 SEIPD [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#version-one-seipd] mechanism is supported by all modern OpenPGP version 4 implementations. It was introduced in RFC 4880 [https://www.rfc-editor.org/rfc/rfc4880.html#section-5.13] as a replacement for the SED (Symmetrically Encrypted Data) packet. SEIPDv1 provides integrity protection of the ciphertext using a SHA-1 checksum of the plaintext as modification detection code.

Version 1 SEIPD can only be combined with version 3 PKESK [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#v3-pkesk] and/or version 4 SKESK [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#v4-skesk] packets.

In this version of the SEIPD packet, the session key is used directly as message key, meaning the payload is encrypted symmetrically using the session key.

When communicating with a mix of recipients, some of whose OpenPGP software only supports OpenPGP version 4, then this mechanism must be used.


[image: Depicts a dotted hexagon labeled "Plaintext", from which a curved arrow passes another dotted hexagon "Session Key" and finally points to a "SEIPDv1" packet. Two more curved arrows originate from the session key and pass Alice' and Bob's encryption key, ending in two PKESK packets.]
Fig. 24 With SEIPDv1, the session key is directly used as message key to encrypt the payload




10.5.1.1. Preparing the plaintext with quick check and modification detection code

Before encrypting the plaintext, the data is modified by adding both a prepended “quick check”, as well as an appended modification detection code.

The quick check comprises of 16 randomly chosen bytes plus 2 bytes which are the last two of the 16 random bytes repeated.
This mechanism is useful to quickly check, whether the correct session key was used when decrypting the message.
These quick-check bytes are prepended to the plaintext.

The modification detection code on the other hand is added to allow detection of unwanted modification of the ciphertext.
First, the two marker bytes 0xD3 and 0x14 are appended to the plaintext. Then, the SHA1 checksum of the entire plaintext including quick check and marker bytes is calculated and appended to the plaintext.


[image: Depicts, how the prior to encryption, the plaintext bytes are prepended with 18 quick check bytes and appended with 22 bytes of modification detection code. The quick check comprises of 16 random bytes plus 2 repeated bytes. The modification detection code starts with the marker bytes 0xD314, followed by the SHA1 checksum of the entire plaintext including quick check and marker bytes.]
Fig. 25 The plaintext inside of a SEIPDv1 packet contains quick check bytes, the actual plaintext and modification detection code



Lastly, the whole prepared plaintext is encrypted symmetrically.




10.5.2. v2 SEIPD, based on AEAD

The version 2 SEIPD [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#version-two-seipd] mechanism was introduced in OpenPGP version 6. Consequently, it can only be used for encryption when all recipients explicitly announce support for it using a Feature signature subpacket.
It provides integrity protection of the ciphertext using AEAD (authenticated encryption with additional data).
v2 SEIPD can only be combined with either version 6 PKESK [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#v6-pkesk] and/or version 6 SKESK [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#v6-skesk] packets.

In version 2 SEIPD, the session key is transformed into a message key, based on a per-message salt value stored separately in the v2 SEIPD packet. The message key is then used in an AEAD scheme to encrypt the message payload.


Note

The session key can use a different symmetric algorithm than the message key.




[image: TODO]
Fig. 26 With SEIPDv2, the message key is derived from the session key in an extra step.



This additional step introduces key-separation into the protocol, which protects against certain attacks, such as an OpenPGP SEIP downgrade attack [https://www.metzdowd.com/pipermail/cryptography/2015-October/026685.html].






            

          

      

      

    

  

    
      
          
            
  

11. Decryption

Message decryption is the process of taking an encrypted message and recovering its plaintext.
This involves multiple steps.

Implementations typically first process the PKESK and SKESK packets leading the SEIPD packet to identify *ESK packets suitable for decryption.
A PKESK packet is suitable if it contains a recipient-Key ID matching a decryption (sub-) key of the user’s certificate.
Typically, all *ESK packets leading a SEIPD packet contain the same session key once decrypted.


Note

Anonymous-recipient PKESK packets contain a recipient-Key ID of 0, so if no suitable non-anonymous PKESK was found, any anonymous PKESKs are tried with any available decryption (sub-) keys (see Anonymous recipients).



If no suitable PKESK packets were found, SKESK packets are tried next, meaning the user is typically prompted to enter a decryption passphrase.

Once any of these methods succeeded, the resulting session key is used to decrypt the SEIPD packet.


11.1. Passphrase-protected session key (SKESK)

Decrypting a SKESK packet to recover the session key is done by performing the encryption steps in reverse, based on a user-provided passphrase.

In both version 4 and version 6 of the SKESK packet, the user is prompted to enter a passphrase, which is passed through the S2K function described by the SKESK packet.
However, the subsequent steps of the procedure are different, as described in the following sections.


11.1.1. SKESK v4

Here, the result of the S2K function is a symmetric key, which is either used to decrypt the encrypted session key contained in the SKESK packet, or - less commonly - used as session key directly (see Direct-Method).


Note

The “direct method” where the result of the S2K function is directly used as session key is only applicable if only one SKESK packet is present.




[image: Diagram depicting how the S2K function is used to derive key symmetric key from the user-provided passphrase. This key is then either used directly as session key, or used to decrypt the encrypted session key.]
Fig. 27 Decrypting the session key from a version 4 SKESK packet.



With version 4 SKESK packets, which are only used with version 1 SEIPD packets, the session key is used as message key without an intermediate derivation.


11.1.1.1. Direct-Method

In version 4 of the SKESK packet, the encrypted session key is optional. A missing encrypted session key signals the use of the “direct-method,” which means the result of passing the passphrase through the S2K function is directly used as the session key/message key.

When the direct method is used, the symmetric cipher algorithm ID of the SKESK packet dictates the cipher algorithm used to decrypt the plaintext from the SEIPD packet.

Otherwise, the cipher algorithm ID to decrypt the SEIPD packet was prefixed to the decrypted session key.

Sanitizing this algorithm ID of the decrypted session key acts as a very early quick check to verify that the used passphrase was correct. For further validation of the session key, see Verify successful session key decryption.




11.1.2. SKESK v6

With version 6 SKESK packets, the result of the passing the passphrase through the S2K function is used as initial keying material (IKM) to derive a symmetric key encryption key using HKDF as a key derivation function. The HKDF function doesn’t use any salt in this step, and the info parameter is assembled from parameters of the SKESK packet.

In the next step, this symmetric key is used to decrypt the session key using AEAD.
The AEAD function uses information from the associated SEIPD v2 packet as additional data.
The function is also salted using the SEIPD v2’s salt.
The AEAD Auth Tag of the SKESK packet is used as authentication tag.

The result is the session key.


[image: Diagram depicting the complicated process of deriving the session key from a SKESK version 6 packet.]
Fig. 28 Decrypting the session key from a version 6 SKESK packet.






11.2. Key-protected session key (PKESK)

More common than SKESK packets are PKESK packets which are used to protect the session key using an encryption key of the recipient.


11.2.1. PKESK v3

With version 3 PKESKs, the recipient’s secret encryption (sub-) key is directly used to decrypt the encrypted session key.
The Key ID of the subkey to be used is recorded in the PKESKs key-id field. A value of 0 indicates an anonymous recipient (see Anonymous recipients).

To detect, which symmetric cipher is used to decrypt the SEIPD v1 packet later on, each public key algorithm uses a slightly different encoding to unpack the symmetric algorithm tag from the decrypted session key. See the respective sections[1] [2] [3] [4] [5] of the standard. Typically, the cipher algorithm ID is prefixed to the actual session key.


[image: Depicts, how the secret-key component of the users encryption subkey is directly used to decrypt the encrypted session key.]
Fig. 29 Decrypting the session key from a version 3 PKESK packet.





11.2.2. PKESK v6

The decryption of version 6 PKESK packets works quite similarly to version 3.


[image: Depicts, how the secret-key component of the users encryption subkey is directly used to decrypt the encrypted session key.]
Fig. 30 Decrypting the session key from a version 6 PKESK packet.



Contrary to the version 3 PKESK, the encrypted session key within the version 6 PKESK does not contain the symmetric cipher algorithm used to decrypt the SEIPD packet.
Instead, this cipher algorithm ID is encoded inside the SEIPD v2 packet directly.




11.3. SEIPD (v1)

Version 1 SEIPD packets MUST only be used with version 3 PKESK packets and/or version 4 SKESK packets.
Any other combinations are not allowed and MUST result in a broken message.


Note

Since SEIPD version 1 is susceptible to downgrade attacks under certain scenarios, it is recommended to use SEIPD version 2 wherever possible.



To decrypt the contents of a version 1 SEIPD packet, the session key obtained in the previous step is used.
The cipher algorithm is either extracted from the decrypted session key (the algorithm ID is typically prefixed to the decrypted session key), or - in case of a SKESK packet using the direct-method - taken from the SKESKs cipher algorithm field.

Once the cipher is initialized, the whole encrypted data from the SEIPD packet is decrypted.


11.3.1. Verifying the quick-check bytes

To quickly verify that the correct session-key was used during decryption, bytes with index 14 and 15 are compared to those with index 16 and 17 (zero-indexed).
A mismatch of those pairs of bytes indicates that the wrong session-key was used and decryption is aborted.



11.3.2. Verifying the modification detection code (mdc)

The contents of a SEIPDv1 packet are protected against unnoticed modification via the addition of a modification detection code.
This is done by calculating the SHA1 checksum of the entire decrypted plaintext, but excluding the last 20 bytes, which are the actual checksum computed by the sender.
Compare figure Fig. 25.

The result is then compared to those last 20 bytes to detect modifications of the ciphertext.


[image: Depicts how the session key is used directly to decrypt the contents of the SEIPD packet.]
Fig. 31 The contents of the SEIPD packet are decrypted using the session key as message key.






11.4. SEIPD w/ AEAD (v2)

Preferred mode.
Version 2 SEIPD packets MUST only be used with version 6 PKESK packets and/or version 6 SKESK packets.
Any other combinations are not allowed and MUST result in a broken message.

Once the session key was obtained from a PKESK or SKESK, it is used to derive a message key and an IV. This is done by passing the session key through a salted HKDF function, where the salt is unique per message and obtained from the SEIPD packet.

The result is split into the message key and first half of the IV.


[image: Depicts how the session key is fed into a salted HKDF to derive both the message key and the first half of an IV.]
Fig. 32 In a first step, a message key and half of an IV is derived from the session key.



Then, the contents of the SEIPDs encrypted data are split into chunks, which are processed sequentially. Each chunk is decrypted using AEAD with parameters from the SEIPD packet as additional data.
For each chunk, the chunk index starting at 0 is passed into the function as second half of the IV.

All decrypted plaintext blocks are appended to form the result of the decryption process.

After all blocks have been processed, in a final AEAD step, the total number of plaintext octets gets appended to the additional data and the final AEAD auth tag from the SEIPD packet is processed.


[image: Depicts, how the message key and index-postfixed IV are used to decrypt each individual chunk of plaintext.]
Fig. 33 Each chunk is decrypted using AEAD using the message key and an IV with appended chunk index.





11.5. SED

The Symmetrically Encrypted Data packet predates the SEIPD packet and is nowadays deprecated.
Due to the lack of integrity protection, this packet is susceptible to a whole class of attacks where the attacker modifies the ciphertext.
Therefore, implementations MUST NOT produce this packet and are encouraged not to accept incoming SED packages from untrusted sources.



[1]
Algorithm-Specific Fields for RSA encryption [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-algorithm-specific-fields-f]



[2]
Algorithm-Specific Fields for Elgamal encryption [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-algorithm-specific-fields-fo]



[3]
Algorithm-Specific Fields for ECDH encryption [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-algorithm-specific-fields-for]



[4]
Algorithm-Specific Fields for X25519 encryption [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-algorithm-specific-fields-for-]



[5]
Algorithm-Specific Fields for X448 encryption [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-algorithm-specific-fields-for-x]







            

          

      

      

    

  

    
      
          
            
  

12. Compression

Optional compression of data is one element of OpenPGP’s composable functionality. Compression within OpenPGP can be convenient to applications.

In one use case, this functionality is particularly helpful: When encrypting a message, the encrypted output is by definition high-entropy, and cannot be compressed anymore - even if the plaintext message was low-entropy, and could have been compressed well (like, for example, a text-file).

This means that to use whatever potential for compression exists, the message must be compressed before encryption. OpenPGP offers an integrated compression mechanism to make this convenient (otherwise, messages would need to be compressed and decompressed before and after encryption, to achieve the same space-efficiency).


12.1. Decompression yields a ‘wrapped’ OpenPGP packet stream

Compression in OpenPGP is a simple mechanism: A Compressed Data packet [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-compressed-data-packet-type] acts as a compressed container for a series of OpenPGP packets.

The compressed data packet consists of the specification of which compression algorithm is used, followed by a compressed representation of the contained data.

The series of OpenPGP packets inside the Compressed Data packet can be handled like any stream of OpenPGP packets.



12.2. Typical usage

Compressed data packets are often used inside encrypted data packets, or wrapping the data of an inline-signed message.





            

          

      

      

    

  

    
      
          
            
  

13. ASCII armor

The native format of OpenPGP data is binary.

However, in many use cases it is customary to use OpenPGP data in a non-binary encoding called “ASCII armor.” For example, ASCII armored OpenPGP data is often used in email, for encrypted messages or for signatures.


13.1. Mechanism

OpenPGP’s ASCII armor mechanism consists of:


	An armor header line [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-armor-header-line]


	Optional armor headers [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-armor-headers] that can contain additional metadata


	The base64 encoded [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-base64-conversions] OpenPGP data


	An optional checksum [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-optional-checksum] for this data


	An armor tail line [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-armor-tail-line] (or footer) that matches the header line






13.2. Example

In the chapter Zooming in: Packet structure of certificates, we take a look at a very minimal variant of Alice’s certificate. In ASCII armored form, the certificate is 388 bytes long, and looks like this:

$ cat alice_minimal.pub
-----BEGIN PGP PUBLIC KEY BLOCK-----

xioGZRbqphsAAAAgUyTpQ6+rFfdu1bUSmHlpzRtdEGXr50Liq0f0hrOuZT7CtgYf
GwoAAAA9BYJlFuqmBYkFpI+9AwsJBwMVCggCmwECHgEiIQaqoYy7JUaFxYNYMgVj
/Te2fzMA+fsOxFc3jNKfECaYswAAAAoJEKqhjLslRoXFZ0cgouNjgeNr0E9W18g4
gAIl6FM5SWuQxg12j0S07ExCOI5NPRDCrSnAV85mAXOzeIGeiVLPQ40oEal3CX/L
+BXIoY2sIEQrLd4TAEEy0BA8aQZTPEmMdiOCM1QB+V+BQZAO
=5nyq
-----END PGP PUBLIC KEY BLOCK-----





In this example, the armor header line uses the header line text BEGIN PGP PUBLIC KEY BLOCK (referring to the certificate data using the term PGP public key). Note that the matching footer uses the text END PGP PUBLIC KEY BLOCK.

There are no armor headers with additional metadata in this example. The base64 encoded message spans five lines, and is followed by a CRC24 checksum line with the content =5nyq.

The armored format is convenient when transferring OpenPGP data (like this certificate) in email Text. It is a robust format for manual copying and pasting, etc.


13.2.1. Contrast with binary OpenPGP data

Using the sq commandline tool, we can compare this with the same OpenPGP data in binary form:

$ sq dearmor alice_minimal.pub > alice_minimal.pub.bin





The resulting binary representation of the same data comprises 228 bytes. We can look at its hexdump:

$ hexdump -C alice_minimal.pub.bin
00000000  c6 2a 06 65 16 ea a6 1b  00 00 00 20 53 24 e9 43  |.*.e....... S$.C|
00000010  af ab 15 f7 6e d5 b5 12  98 79 69 cd 1b 5d 10 65  |....n....yi..].e|
00000020  eb e7 42 e2 ab 47 f4 86  b3 ae 65 3e c2 b6 06 1f  |..B..G....e>....|
00000030  1b 0a 00 00 00 3d 05 82  65 16 ea a6 05 89 05 a4  |.....=..e.......|
00000040  8f bd 03 0b 09 07 03 15  0a 08 02 9b 01 02 1e 01  |................|
00000050  22 21 06 aa a1 8c bb 25  46 85 c5 83 58 32 05 63  |"!.....%F...X2.c|
00000060  fd 37 b6 7f 33 00 f9 fb  0e c4 57 37 8c d2 9f 10  |.7..3.....W7....|
00000070  26 98 b3 00 00 00 0a 09  10 aa a1 8c bb 25 46 85  |&............%F.|
00000080  c5 67 47 20 a2 e3 63 81  e3 6b d0 4f 56 d7 c8 38  |.gG ..c..k.OV..8|
00000090  80 02 25 e8 53 39 49 6b  90 c6 0d 76 8f 44 b4 ec  |..%.S9Ik...v.D..|
000000a0  4c 42 38 8e 4d 3d 10 c2  ad 29 c0 57 ce 66 01 73  |LB8.M=...).W.f.s|
000000b0  b3 78 81 9e 89 52 cf 43  8d 28 11 a9 77 09 7f cb  |.x...R.C.(..w...|
000000c0  f8 15 c8 a1 8d ac 20 44  2b 2d de 13 00 41 32 d0  |...... D+-...A2.|
000000d0  10 3c 69 06 53 3c 49 8c  76 23 82 33 54 01 f9 5f  |.<i.S<I.v#.3T.._|
000000e0  81 41 90 0e                                       |.A..|
000000e4





If you read the chapter that discusses the packet internals of certificate data, you may recognize this data.

This binary data is, of course, not convenient to copy into the text of an email, or similar. On the other hand, it’s a more compact format. In this example, the binary OpenPGP data is around 40% smaller than the ASCII armored representation.

Both the binary and the ASCII armored format encode exactly the same information. Depending on the context in which the OpenPGP data is used, one or the other is more appropriate.




13.3. The cleartext signature framework

One noteworthy mechanism in OpenPGP that uses a specialized variant of ASCII armoring is the cleartext signature framework [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#cleartext-signature], which stores an ASCII-armored signature and a cleartext message as a combined text file.

See our section on the cleartext signature framework for an example of that format.



13.4. Advanced topics


13.4.1. Optional checksum and its deprecation

Historically, the ASCII armor mechanism of OpenPGP has specified an (optional) checksum mechanism for the base64 encoded data.

The specification for OpenPGP version 6 deprecates this mechanism [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-optional-checksum].

Existing CRC24 footers should be ignored, and generating these footers is strongly discouraged, except in cases where interoperability requires it.






            

          

      

      

    

  

    
      
          
            
  

14. Pitfalls / Things to keep in mind


14.1. Key IDs are really not guaranteed to be unique

Use fingerprints, or expect duplicates



14.2. Signature Subpackets can have duplicates



14.3. Packet Nesting can be unreasonable


	EBNF of allowed packet sequences is complex -> Recommend stricter [https://mailarchive.ietf.org/arch/msg/openpgp/uepOF6XpSegMO4c59tt9e5H1i4g/] best-practices?








            

          

      

      

    

  

    
      
          
            
  

15. Algorithms and Policy


Note

This section is still about to be written.






            

          

      

      

    

  

    
      
          
            
  

16. OpenPGP versions


16.1. Differences between OpenPGP versions


Note

This section is still about to be written.







            

          

      

      

    

  

    
      
          
            
  

17. Migration from OpenPGP v4 to v6

The OpenPGP protocol has developed over time, and will continue to do so, adapting to new challenges and expectations.

Some of these changes might be subtle, like the addition of a new hash algorithm, while others are more invasive, like a new OpenPGP key format.

This makes it necessary to migrate both implementations and existing user keys and certificates.

In this chapter, we want to explore possible steps to migrate from OpenPGP v4 as defined by RFC4880 to v6 (crypto-refresh).


17.1. Adoption of new features

The new standard introduced a number of new features, which improve security aspects of the protocol.
Some of these features can only be used with new OpenPGP version 6 keys, and require users to migrate to fresh keys.

Other features can be used with existing OpenPGP version 4 keys, as soon as implementations support the features, and users’ certificates reflect that the features are supported by the user’s software.


17.1.1. SEIPD v2

A perfect example for a newly introduced feature that can be applied to existing v4 keys are the new SEIPD v2 packets.

Existing OpenPGP v4 keys can simply announce support for SEIPD v2 via a Feature subpacket in their certificate. Publishing such an updated Feature set via their OpenPGP certificate signals that the user’s OpenPGP software is capable of handling SEIPD v2.

Senders who can produce this new encryption mode can then opt to use it when encrypting to this recipient.



17.1.2. S2K usage mode AEAD

Another good example is the S2K mechanism for secret-key encryption.

This feature concerns local copies of OpenPGP private keys on each user’s machine. There is, by definition, no interoperability concern around this feature: Passphrase-protection of the private key material is a local implementation detail on each user’s machine.

The RFC states [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-avoiding-ciphertext-malleab] that: “Users are RECOMMENDED to migrate to AEAD.”

In the context of this chapter, this means that encrypted private keys should be upgraded by the user’s OpenPGP software to use S2K usage mode 253 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-secret-key-encryption-s2k-u] (AEAD) to encrypt the user’s private key material.

Note that S2K usage mode 253 (AEAD) can be applied to both version 6 and version 4 private keys, with sufficiently up-to-date OpenPGP software. This S2K usage mode is strongly recommended for private keys of all versions.


17.1.2.1. S2K method Argon2

Independently, the RFC recommends the use of the Argon2 S2K method to hash passphrases, when it is available. This mechanism also concerns the local passphrase-protection of private key material.

Use of Argon2 is only allowed in combination with AEAD.

Users can and should migrate the protection of their private keys to Argon2 (combined with the AEAD usage mode).




17.1.3. OpenPGP v6 signatures

Version 6 signatures can’t be generated with OpenPGP v4 keys. Only OpenPGP v6 keys can issue v6 signatures.

On the receiving/verifying side, v6 signatures can be checked by anyone whose OpenPGP software supports v6 certificates and v6 signature verification. This includes OpenPGP users who currently use a v4 key.



17.1.4. Software migration

Over time, steadily more OpenPGP libraries and tools will add support for OpenPGP v6 features. This migration might take a while, while implementers catch up.

The OpenPGP v6 standard gives guidance for library authors to extend an OpenPGP implementation to support version 6 in Appendix B. Upgrade Guidance [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-upgrade-guidance-adapting-i].




17.2. Key migration

Some OpenPGP v6 features are only available for use with keys in the v6 format.

For example, only an OpenPGP v6 key can issue a v6 signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-versions-in-signatur].

On the other hand, an OpenPGP v6 key can only issue v6 signatures, so if you require compatibility with v4 verifiers, you shouldn’t yet migrate to a v6 key/certificate.

When migrating to a v6 key, generating a fresh v6 key is the recommended approach.

It is not possible to adopt v4 subkeys into a v6 key, since every subkey to a v6 primary key must itself be a v6 subkey, see in OpenPGP v6 certificate structure [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#section-10.1.1-5].


17.2.1. Converting v4 component keys into v6 component keys

That is, taking the existing key material from a v4 component key and re-framing it as a v6 component key, for use with an OpenPGP version 6 certificate.


TL;DR

don’t.




17.2.1.1. Motivation to convert

It might be tempting to consider migrating existing key material to the v6 format. Such a step should be considered very carefully though.

Unfortunately, keys cannot simply be converted into the new format, and used seamlessly. For one thing, the Fingerprint of component keys changes for the same key material between version 4 and version 6 (and with it, the Key ID that is a shortened version of the Fingerprint).

An OpenPGP v4 Fingerprint is calculated as the SHA-1 checksum of the normalized public key packet, which results in a 20 byte fingerprint (often represented as a 40 character hexadecimal string). The v4 Key ID consists of the last 64 bits of the fingerprint.

On the other hand, a v6 fingerprint is calculated as the SHA-256 checksum of the normalized public key packet, so it comprises 32 bytes. The v6 Key ID consists of the first 64 bit of the fingerprint.

As a consequence, component key identifiers in OpenPGP artifacts, such as issuer subpackets in signatures, or recipient Key IDs in PKESK packets issued by a v4 key do not match the component key identifiers of same key material converted to v6.

Further, v6 keys can only issue v6 signatures, and v6 certificates can only be used to verify v6 signatures. Otherwise, a downgrade vector could exist, by which verifiers could be tricked into verifying specially crafted v4 signatures against OpenPGP v6 certificates. If a vulnerability arose in OpenPGP v4 at some point, which allows an attacker to craft valid v4 signatures, this could affect OpenPGP v6 certificates.



17.2.1.2. Retaining decryption access to old messages

Another motivation for converting old key material might be the desire to stay able to decrypt messages encrypted for the old key.
This won’t be possible out of the box, as the Key ID in the respective PKESK packet no longer matches that of the converted key. So at the bare minimum, the user’s implementation would need to be able to map Key IDs. This is not a feature prevalent in the ecosystem though.

An alternative approach - that doesn’t require special handling in the user’s OpenPGP software - is to replace the PKESK headers of the messages. The session key for each message can be easily obtained by decrypting the message using the old key, so the session key can be re-encrypted for either the converted v6 key, or a freshly generated v6 key. This new PKESK packet can be added to, or replaced in, the message.



17.2.1.3. Conclusion

In conclusion, converting v4 key material to v6 to verify old signatures is not a strong argument.
Being able to read old messages using a converted key is also not really viable, since it is equally simple to just re-create the PKESK headers for a fresh v6 key.


Note

Also see https://wiki.gnupg.org/OpenPGPEmailSummit202305Notes









            

          

      

      

    

  

    
      
          
            
  

18. Advanced material: Certificates


18.1. When are certificates valid?

Certificates are composites of components that are linked together using signatures.

A certificate can be valid or invalid as a whole. However, even when a certificate is valid, individual components (subkeys or identities) of it can be invalid.

In this section, we discuss the validity of certificates and their components. This discussion is closely related to signature validity, and builds on that concept.

The validity of the signatures that link a certificate is a necessary precondition. Two concepts are particularly central to the validity of certificates and components:


	Expiration


	Revocation





18.1.1. Expiration

Certificates and components can “expire,” which renders them invalid. Each component of a certificate can have an expiration time, or be unlimited in its temporal validity.

The OpenPGP software of a sender will refuse to encrypt email using an expired certificate, or using an encryption component key that is expired. The sender’s software rejects encryption to the key, essentially as a courtesy to the certificate owner, respecting the preferences expressed in their certificate metadata.

The expiration mechanism in OpenPGP is complemented by a mechanism to extend/renew expiration time.

Using the expiration mechanism is useful for two reasons:


	Expiration of a certificate means that it cannot be used anymore. This forces users of that certificate (or their OpenPGP software) to poll for updates for it. For example, from a keyserver.


	It is a passive way for certificates to “time out,” e.g., if their owner loses control over them, or isn’t able to broadcast a revocation, for any reason.




Component keys use Key Expiration Time subpackets for expressing the expiration time. Identity components rely on the signature expiration time [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#signature-expiration-subpacket] subpacket of their binding signature. If a binding signature expires, the binding becomes invalid, and the component is considered expired.



18.1.2. Revocation

Since OpenPGP certificates act as “append only” data structures, existing components or signatures cannot simply be “removed.” Instead, they can be marked as invalid by issuing revocation signatures. These additional revocation signatures are added to the certificate.

Each component, such as User ID and a subkey, can be revoked without affecting the rest of the certificate.

The primary User ID is an exception: when it is revoked, the entire certificate is considered invalid.

Revoking the primary key with a Key revocation signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-key-revocation-signature-ty] (type ID 0x20) also marks the entire certificate, including all of its components, as invalid and unusable.



18.1.3. Semantics of Revocations

In contrast to expiration, revocation is typically final and not withdrawn[1].

A revocation indicates that the component should not be used. Revocation signatures over components use a Reason for Revocation [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#reason-for-revocation] subpacket to specify further details about the reason why the component or certification was revoked. The OpenPGP format specifies a set of distinct values for Reasons for Revocation [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#table-10], and additionally provides space for a human-readable free text field for comments about the revocation.

Some libraries, such as Sequoia PGP, expose these distinct reasons for users, enabling nuanced machine-readable statements by the revoker. Other implementations focus mainly on the distinction between “hard” and “soft” revocations.

Of the defined revocation types, Key is superseded, Key is retired and User ID is no longer valid are considered “soft” revocations. Any other reason (including a missing reason for revocation subpacket) means that the revocation is “hard.”

The distinction between hard and soft revocations plays a role when evaluating the validity of a component or signature at a specified reference time: Hard revocations have unbounded temporal validity, they are in effect even before their creation time and therefore invalidate the revoked component or signature at all points in time.

By contrast, a soft revocation leaves the revoked component or signature valid before the creation time of the revocation signature. A soft revocation can technically be overridden, for example, with a newer binding signature (the new binding signature and its metadata then shadow the revocation and re-connect and re-validate the component).

Hard revocations address the following problem: If a private key was compromised, then the attacker can issue signatures using that key. This means, the attacker could issue a signature dated before the revocation, impersonating the owner of the key. A recipient of that signature would mistakenly consider this signature valid if the issuing key has been soft revoked. This is a problem.
To counteract this problem, it is reasonable to clearly mark compromised keys as suspect at any point in time. That’s what hard revocations do.

On the other hand, if the subkey was merely retired using a soft revocation, and the certificate holder moved to a different subkey, then the signatures in the past, made by the retired key, are still valid.




18.2. Certificates are effectively append-only data structures

OpenPGP certificates act as append-only data structures, in practice. Packets that are associated with a certificate cannot be “recalled”, once they were published. Third parties (such as other users, or keyservers) may keep and/or distribute copies of those packets.

While it is not possible to remove elements, once they were publicly associated with an OpenPGP certificate, it is possible to invalidate them by adding new metadata to the certificate. This new metadata could set an expiration time on a component, or explicitly revoke that component. In both cases, no packets are removed from the certificate.

Invalidation resembles removal of a component in a semantical sense. The component is not a valid element of the certificate anymore, at least starting from some point in time. Implementations that handle the certificate may omit the invalid component in their representation.

We have to distinguish the “packet level” information about a certificate from an application-level view of that certificate. The two may differ.


18.2.1. Reasoning about append-only properties in a distributed system

OpenPGP is a decentral and distributed system. Users can obtain and transmit certificate information about their own, as well as other users’, certificates using a broad range of mechanisms. These mechanisms include keyservers, manual handling, Web Key Directory [https://datatracker.ietf.org/doc/draft-koch-openpgp-webkey-service/] (WKD) and Autocrypt [https://en.wikipedia.org/wiki/Autocrypt].

Different users’ OpenPGP software may obtain different views of a particular certificate, over time. Individual users’ OpenPGP instances have to reconcile and store a combined version of the possibly disparate elements they obtain from different sources.

In practice, this means that various OpenPGP users may have differing views of any given certificate. For various reasons, not all users will be in possession of a fully up-to date and complete version of a certificate.

There are various potential problems associated with this fact: Users may not be aware that a component has been invalidated by the certificate holder. Revocations may not have been propagated to some third party. So for example, they may not be aware that the certificate holder has rotated their encryption subkey to a new one, and doesn’t want to receive messages encrypted to the previous encryption subkey.

One mechanism that addresses a part of this issue is expiration: By setting their certificates to expire after an appropriate interval, certificate holders can force their communication partners to refresh their certificate, e.g. from a keyserver[2].

Good practices, like setting appropriate expiration times, can mitigate the complexity of the inherently distributed nature of certificates.

However, such mitigations by definition cannot address all possible cases of outdated certificate information in a decentralized, asynchronous system such as OpenPGP. So a defensive approach is generally appropriate when reasoning about the view of certificates that different actors have.

When thinking about edge cases, it’s useful to “assume the worst.” For example:


	Recipients may not obtain updates to a certificate in a timely manner (this could happen for various reasons, including, but not limited to, interference by malicious actors).


	Data associated with a certificate may compound, and a certificate can become too large for convenient handling, even in the course of normal operations (for example, a certificate may receive very many legitimate third-party certifications). If such a problem arises, then by definition, the certificate holder cannot address it: remember that the certificate holder cannot “recall” existing packets.






18.2.2. Differing “views” of a certificate exist

Another way to think about this discussion is that different OpenPGP users may have a different view of any certificate. There is a notional “canonical” version of the certificate, but we cannot assume that every user has exactly this copy. Besides propagation of elements that the certificate holder has linked to a certificate, third-party certifications are by design a distributed mechanism. A third-party certification is issued by a third party, and may or may not be distributed widely by them, or by the certificate holder. Not distributing third-party certifications widely is a workflow that may be entirely appropriate for some use cases[3].

As a general tendency, it is desirable for OpenPGP users to have the most complete possible view of all certificates that they interact with.

However, there are contexts in which it is preferable to only use a subset of the available elements of a certificate. We discuss this in the section Certificate minimization.




18.3. Merging

As described above, OpenPGP certificates are effectively append-only data structures. As part of the practical realization of this fact, OpenPGP software needs to merge different copies of a certificate.

For example, Bob’s OpenPGP software may have a local copy of Alice’s certificate, and obtain a different version of Alice’s certificate from a keyserver. The goal of the implementation is to add new information about Alice’s certificate, if any, to the local copy. Alice may have added a new identity, replaced a subkey with a new subkey, or revoked some components of her certificate. Or, Alice may have revoked her certificate, signaling that she doesn’t want communication partners to use that certificate anymore. All of these updates could be crucial for Bob to be aware of.

Merging two versions of a certificate involves making decisions about which packets should be kept. The versions of the certificate will typically contain some packets that are identical. No duplicates of the exact same packet should be stored in the merged version of the certificate. Additionally, if the newly obtained copy contains packets that are in fact entirely unrelated to the certificate, those should not be retained (a third party may have included unrelated packets, either by mistake, or with malicious intent).


18.3.1. Handling unauthenticated information

For information that is related to the certificate, but not bound to it by a self-signature, there is no generally correct approach. The receiving implementation must revolve these cases, possibly in a context-specific manner. Such cases include:


	Third-party certifications. These could be valuable information, where a third party attests that the association of an identity to a certificate is valid. On the other hand, they could also be a type of spam.


	Subpackets in the unhashed area of a signature packet. Again, these could contain information that is useful to the recipient. However, the data could also be either useless, or even misleading/harmful.







18.4. Certificate minimization

Certificate minimization is the practice of presenting a partial view of a certificate by filtering out some of its components.

Filtering out some elements of a certificate can serve various purposes:


	Omitting unnecessary components for specific use-cases. For example, email clients need encryption, signing and certification component keys, but not authentication subkeys, which are used, e.g., for SSH connections.


	Omitting third-party certifications if they are not required for a use-case. “Certificate flooding,” [https://dkg.fifthhorseman.net/blog/openpgp-certificate-flooding.html] for example, can lead to consumer software rejecting a certificate entirely. Filtering out third-party User ID certifications on import can mitigate this.


	Sometimes, a certificate organically grows so big that the user software has problems handling it [https://www.reddit.com/r/GnuPG/comments/bp23p4/my_key_is_too_large/].





18.4.1. Elements that can be omitted as part of a minimization process

There are different types of elements that can be omitted during minimization:


	Subkeys (along with signatures on those subkeys)


	Identity components (along with both their self-signatures and third-party signatures)


	Signatures, by themselves:


	Self-signatures that have been superseded by newer self-signatures for the same purpose


	Third-party certifications










18.4.2. Minimization in applications


18.4.2.1. Hagrid, which runs keys.openpgp.org

The hagrid keyserver software [https://gitlab.com/keys.openpgp.org/hagrid] doesn’t publish the identity components in certificates by default. This is a central aspect of the privacy policy [https://keys.openpgp.org/about/privacy] of the service. Certificates can be uploaded to the service by third parties, which is useful. However, identifying information is only distributed by the service on an explicit opt-in basis.

Separately, third-party certifications are currently filtered out by the service, to avoid flooding attacks.



18.4.2.2. GnuPG

GnuPG offers two explicit methods for certificate minimization, described in the GnuPG manual [https://www.gnupg.org/documentation/manuals/gnupg-devel/OpenPGP-Key-Management.html] as:


	clean
	Compact (by removing all signatures except the selfsig) any user ID that is no longer usable (e.g. revoked, or expired). Then, remove any signatures that are not usable by the trust calculations. Specifically, this removes any signature that does not validate, any signature that is superseded by a later signature, revoked signatures, and signatures issued by keys that are not present on the keyring.



	minimize
	Make the key as small as possible. This removes all signatures from each user ID except for the most recent self-signature.





clean removes third-party signatures by certificates that are not present in current keyring, as well as other stale data. minimize removes superseded signatures that are not needed at the point when the command is executed.

Independently, GnuPG by default strips some signatures on key import [https://dev.gnupg.org/T4607#127792][4]. However, a number of Linux distributions change this default behavior, and continue to import signatures without minimization by default. e.g. Debian [https://dev.gnupg.org/T4628#128513] and Arch Linux: stripping third-party certifications on import, by default, is problematic for users who want to leverage authentication based on the Web of Trust mechanism.




18.4.3. Limitations that can result from stripping historical self-signatures

Some implementations, such as Sequoia, prefer to rely on the full historical set of self-signatures to construct a view of the certificate over time. This way, signatures can be verified at different reference times. In this model, removing superseded self-signatures can cause problems with the validation of historical signature.

An example for the tension between minimization and nuanced verification of the temporal validity of signatures can be seen in the case of rpm-sequoia. See this discussion [https://github.com/rpm-software-management/rpm-sequoia/issues/50#issuecomment-1689642607] for details:

Initially, when checking the validity of a data signature for a software package, rpm-sequoia used the signature’s creation time as the reference time. However, the availability of historical self-signatures in certificates is limited. So sometimes only a more recent self-signature for the primary key is available, and there is no evidence that the primary key was valid at the reference time.

To deal with this reality, the rpm-sequoia implementation was adjusted to accept data signatures that predate the validity of the current primary key self-signature[5].



18.4.4. Autocrypt

The Autocrypt [https://autocrypt.org/] project describes itself as:


[..] a set of guidelines for developers to achieve convenient end-to-end-encryption of e-mails. It specifies how e-mail programs negotiate encryption capabilities using regular e-mails.




The Autocrypt Level 1 specification defines a specific minimal format for OpenPGP certificates [https://autocrypt.org/level1.html#openpgp-based-key-data] that are distributed by the autocrypt mechanism.

One goal of the Autocrypt mechanism is to distribute certificates widely. To this end, Autocrypt sends certificates in mail headers, where smaller size is greatly preferable.

Basic encrypted email functionality requires only a small subset of the recipient’s certificate, so small certificate size is feasible.



18.4.5. Minimization for email

Note that minimization of certificates isn’t generally “right” or “wrong.” The benefit or harm depends on the context.

For example, we might consider minimizing a certificate for distribution via WKD, with the use-case of email in mind.

Many certificates can be significantly pruned if the only goal of distributing them is to enable encryption and signature verification. For such cases, many components can be dropped, including invalid subkeys and their binding signatures, authentication subkeys (which are irrelevant to email), shadowed self-signatures, and third-party certifications. With many real-world certificates, the space savings of such a minimization are significant[6].

Such minimization might be appropriate and convenient to enable encrypted communication with a Proton Mail client, which automatically fetches OpenPGP certificates via WKD while composing a message. The Proton Mail use case requires only component keys, not third-party certifications, and it doesn’t require historical component keys or self-signatures.

However, in a different context, the same certificate might be fetched to verify the authenticity of a signature. In that case, third-party certifications may be crucial for the client. Stripping them could prevent the client from performing Web of Trust calculations and validating the authenticity of the certificate.



18.4.6. Pitfalls of minimization

Disadvantages/risks of minimizing certificates:


	A minimized certificate does not present a full view of how it (and the validity of its components) evolved over time.


	As the OpenPGP subsystem on a user’s computer learns about more certificates, third-party certifications that were previously unusable may become usable. Dropping third-party certifications by unknown issuers as a part of minimization prevents this mechanism.


	An OpenPGP implementation that minimizes a certificate might remove component keys that it cannot use itself (e.g. because it doesn’t support the algorithm of that key), even if the receiving implementation supports them.


	Refreshing certificates from key servers may inflate the certificate again, since OpenPGP certificates tend to act as append-only structures.


	Some libraries, such as anonaddy-sequoia [https://gitlab.com/willbrowning/anonaddy-sequoia/-/blob/master/src/sequoia.rs?ref_type=heads#L125] strip unusable encryption subkeys, but retain at least one subkey, even if all subkeys are expired. Although this may leave only an expired encryption subkey in the certificate, this presents a better UX for the end user who potentially is still in possession of the private key for decryption.






18.4.7. Guidelines


	Don’t minimize certificates unless you have a good reason to.


	When minimizing a certificate, minimize it in a way that suites your use-case. E.g., when minimizing a certificate for distribution alongside a signed software packet, make sure to include enough historical self-signatures as to not break the verification of the signed packet.


	When presenting a minimized view of a certificate to a consumer, consider when that a new version of that view needs to be generated. Ideally, minimized certificates are freshly generated on demand (e.g., an Autocrypt header is constructed while an email is sent or composed). The receiver is expected to typically merge all data it sees locally.







18.5. Fingerprints and beyond: “Naming” certificates in user-facing contexts

Certificates in OpenPGP have traditionally often been “named” using hexadecimal strings of varying length.

For example, a business card might have shown the hexadecimal fingerprint of a person’s OpenPGP certificate to facilitate secure communication. Over time, different formats and lengths for these identifiers have been used.

This section outlines the various ways in which certificates can be named, and their properties.


18.5.1. Fingerprints and Key IDs in Version 4

With OpenPGP version 4 certificates, it was customary that user-facing software used 20 byte (160 bit) fingerprints as an identifier for the certificate. Or alternatively, the 8 byte (64 bit) Key ID variant of the fingerprint. Both were represented in hexadecimal format, sometimes with whitespace to group the identifier into blocks for easier readability.

Workflows such as


	accepting a certificate for a communication partner, or


	issuing a third-party certification for an identity,




required users to manually compare the 40 character long hexadecimal representation of a fingerprint against a reference source for that fingerprint.



18.5.2. Fingerprints in Version 6

The OpenPGP version 6 standard uses 32 byte (256 bit) fingerprints, but explicitly defines no format for displaying those fingerprints in a human-readable form. The standard recommends strongly against [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-fingerprint-usability] using version 6 fingerprints as identifiers in user-facing workflows.

Instead, “mechanical fingerprint transfer and comparison” should be preferred, wherever possible. The reasoning is that humans tend to be bad at comparing high-entropy data[7] (in addition, many users are probably put off by being asked to compare long hexadecimal strings).



18.5.3. Use of Fingerprints and Key IDs in APIs

However, both Fingerprints and Key IDs may (and usually must) be used, programmatically, by software that handles OpenPGP data, to address specific certificates. This is equally true for OpenPGP version 6.

Note that regardless of the OpenPGP version, software that relies on 8-byte Key IDs should not assume that Key IDs are unique. It is trivial to generate collisions for 8-byte Key IDs, so applications must be able to handle Key ID collisions gracefully.

The historical 4-byte “short Key IDs” format should not be used anywhere, anymore (finding collisions in a 32-bit keyspace has been trivial for a long time [https://evil32.com/]).



18.5.4. Looking up certificates by email

Searching OpenPGP certificates by email is a use case that often arises. For example, when composing an email to a new contact, the sender may want to find the OpenPGP certificate for that contact.

Different mechanisms allow certificate lookup by email, for example:


	Web Key Directory [https://datatracker.ietf.org/doc/draft-koch-openpgp-webkey-service/] (WKD)


	The keys.openpgp.org [https://keys.openpgp.org/] “verifying keyserver” (also known as “hagrid” [https://gitlab.com/keys.openpgp.org/hagrid], the name of the server software it runs)


	SKS-style OpenPGP keyservers (today, most of these run the Hockeypuck [https://github.com/hockeypuck/hockeypuck] software)




Their properties differ, for more see Certificate distribution mechanisms.




18.6. Certificate freshness: Triggering updates with an expiration time

For a certificate holder, one problem is that their communication partners may not regularly poll for updates of their certificate.

A certificate holder usually prefers that everyone else regularly obtains updates for their certificate. This way, a third party will, for example, not mistakenly keep using the certificate indefinitely, after it gets revoked. Setting an expiration time on the certificate, ahead of time, limits the worst case scenario: communication partners will at most use a revoked certificate until its expiration time, even if they never learn of the revocation.

Once the expiration time is reached, third parties, or ideally their OpenPGP software will have to stop using the certificate, and may attempt to obtain an update for it. For example, from a keyserver, or via WKD. Ideally, certificate updates are obtained automatically, by the user’s OpenPGP software, without any need for human intervention.

After the update, the updated copy of the certificate will usually have a fresh expiration time. The same procedure will repeat once that new expiration time has been reached.



18.7. Metadata leak of Social Graph

Third-party certifications are signatures over identity components made by other users.

These certifications form the back-bone of the OpenPGP trust-model called the Web of Trust. The name stems from the fact that the collection of certifications forms a unidirectional graph resembling a web. Each edge of the graph connects the signing certificate to the identity component associated with another certificate.

OpenPGP software can inspect that graph. Based on the certification data in the graph and a set of trust anchors, it can infer whether a target certificate is legitimate.

The trust anchor is usually the certificate holder’s own key, but a user may designate additional certificates of entities they are connected to as trust anchors.

Third-party certifications can be published as part of the target certificate to facilitate the process of certificate authentication. Unfortunately, a side effect of this approach is that it’s feasible to reconstruct the entire social graph of all people issuing certifications. In addition, the signature creation time of certifications can be used to deduce whether the certificate owner attended a Key Signing Party (and if it was public, where it was held) and whom they interacted with.

So, there is some tension between the goals of


	a decentralized system where every participant can access certification information and perform analysis on it locally,


	privacy related goals (also see Looking up certificates by email, for a comparison of certificate distribution mechanisms, which also touches on this theme).






18.8. Adding unbound, local User IDs to a certificate

Some OpenPGP software may add User IDs to a certificate, which are not bound to the primary key by the certificate’s owner. This can be useful to store local identity information (e.g., Sequoia’s public store attaches “pet-names” [https://sequoia-pgp.org/blog/2023/04/08/sequoia-sq/#an-address-book-style-trust-model] to certificates, in this way).

Sequoia additionally certifies these “local, third party, User IDs” with a local trust anchor to facilitate local authentication decisions.
To prevent accidental publication of these local User IDs (e.g. to public keyservers), Sequoia marks these binding signatures as “local” artifacts using Exportable Certification [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-exportable-certification] subpackets to mark them as non-exportable.



18.9. Certificate distribution mechanisms

Different mechanisms for discovering certificates, and updating certificate data exist in the OpenPGP space:


	A Web Key Directory service is based on a well-known location on a webserver, serving certificates in a specific format. A WKD server is operated by the entity that controls the DNS domain of an email-based identity of a certificate. This means that WKD is inherently decentralized, and the reliability of OpenPGP certificates may vary depending on the organization that operates a particular WKD instance.


	The keys.openpgp.org service is a “verifying” keyserver: the keyserver software only publishes identity components (which include email addresses) after sending a verification email to that address, and receiving opt-in consent by the user of the email address. This service makes a different tradeoff: it is centralized, and relying on it to correctly perform the verification step requires trust in the operator. The tradeoff allows the service to only list identity information with the consent of the owner of that identity, and to prevent “enumeration” of the certificates and identities it stores (that is: third parties cannot obtain a list of email addresses in the service’s database). By design, this service allows easy publication of revocations without requiring publication of any identity components.


	SKS-style keyservers act as a distributed synchronizing database, which accepts certificate information without verification. The SKS network handles third-party signatures, additional changes to their handling are pending[8].




One central difference between hockeypuck and hagrid (the software that runs the keys.openpgp.org service) is that hockeypuck distributes identity packets and third-party certifications that have indeterminate validity, while hagrid does not.



18.10. Third-party certification flooding

Traditional OpenPGP keyservers are one mechanism for collection and distribution of certificate information. Their model revolves around receiving certificate information from sources that don’t identify themselves to the keyserver network. Traditionally, these keyservers have accepted both components bound to certificates by self-signatures, and third party identity certifications.

While a convenience for consumers, indiscriminately accepting and integrating third-party identity certifications comes with significant risks.

Without any restrictions in place, malicious entities can flood a certificate with excessive certifications. Called “certificate flooding,” this form of digital vandalism grossly expands the certificate size, making the certificate cumbersome and impractical for users.

It also opens the door to potential denial-of-service attacks, rendering the certificate non-functional or significantly impeding its operation.

The popular SKS keyserver network experienced certificate flooding firsthand [https://dkg.fifthhorseman.net/blog/openpgp-certificate-flooding.html] in 2019, causing significant changes to its operation.


Note

The keys.openpgp.org (KOO) service performs a similar function as the SKS-style keyservers.
However, there are major differences in its design and tradeoffs.

The KOO keyserver was designed to:


	conform to GDPR regulations [https://en.wikipedia.org/wiki/General_Data_Protection_Regulation], and


	be resistant to flooding-style vandalism.




To achieve these goals, KOO does not serve identity components at all, unless an explicit opt-in has been performed, using a confirmation process vial email. Third-party certifications are also not served by default, but only under very specific circumstances, which preclude flooding.




18.10.1. Hockeypuck-based keyservers

Currently, third-party certification flooding can be worked around by users or administrators requesting the removal/re-adding of a certificate. See here [https://github.com/hockeypuck/hockeypuck/wiki/HIP-1:-Regaining-control-over-public-key-identity-with-authenticated-key-management].

Additional mechanisms are upcoming.




18.11. First-Party attested third-party certifications in OpenPGP (1pa3pc)

First-Party attested third-party certifications in OpenPGP [https://datatracker.ietf.org/doc/draft-dkg-openpgp-1pa3pc/] are a “mechanism to allow the owner of a certificate to explicitly approve of specific third-party certifications”. 1pa3pc was designed to enable flooding-proof distribution of third-part certifications.

This mechanism uses the attested certifications signature subpacket (type ID 37), which currently only exists as a proposed feature in draft-ietf-openpgp-rfc4880bis [https://www.ietf.org/archive/id/draft-ietf-openpgp-rfc4880bis-10.html#table-3][9].


18.11.1. Support


	The keys.openpgp.org (KOO) keyserver supports 1pa3pc [https://gitlab.com/keys.openpgp.org/hagrid/-/commit/39c0e12ac64588220d36bada6497d8396f5915b3].


	The Hockeypuck keyserver software plans to add support for 1pa3pc [https://github.com/hockeypuck/hockeypuck/issues/136#issuecomment-1812466084] in version 2.2.0.


	The Sequoia sq commandline tool allows adding [https://man.archlinux.org/man/sq-key-attest-certifications.1] attested third-party certifications to a certificate.






[1]
While some revocations can be reverted, undoing revocations is an uncommon workflow. Unlike expirations, which are commonly undone by extending the expiration time.



[2]
See, for example, here [https://blogs.gentoo.org/mgorny/2018/08/13/openpgp-key-expiration-is-not-a-security-measure/]: “Expiration times really serve two purposes: naturally eliminating unused keys, and enforcing periodical checks on the primary key.”



[3]
The two parties to a certification (the issuer and the target of the certification) may prefer not to publish their mutual association. Also see Metadata leak of Social Graph.



[4]
GnuPG’s changes in the default handling of third-party certifications on imports were prompted by the 2019 keyserver flooding event.



[5]
Which in OpenPGP version 4 is often a primary User ID binding signature.



[6]
The following fragment processes an example certificate. It drops any subkey that is not valid at the time of export (because of revocation or expiration), authentication subkeys, and any third-party certifications:

gpg --export-options export-minimal,export-clean,no-export-attributes \
    --export-filter keep-uid=mbox=wiktor@metacode.biz \
    --export-filter 'drop-subkey=expired -t || revoked -t || usage =~ a' \
    --export wiktor@metacode.biz





At the time of writing, the original certificate consists of 152322 bytes of data. The filtered variant consists of only 3771 bytes, which is 40x smaller. In some contexts, there are hard constraints on size, and minimization is unavoidable, e.g., when embedding certificate data in email headers.



[7]
See “An Empirical Study of Textual Key-Fingerprint Representations” https://www.ibr.cs.tu-bs.de/papers/schuermann-usenix2016.pdf



[8]
https://github.com/hockeypuck/hockeypuck/issues/136



[9]
Introducing the attested certifications signature subpacket (type ID 37) was unfortunately not in scope of the chartered topics for the current “crypto-refresh” work of the OpenPGP working group. However, hopefully the working group can handle this feature in future rechartering.








            

          

      

      

    

  

    
      
          
            
  

19. Advanced material: Private keys


19.1. Private keystores

This section examines the diverse architectures and operational mechanics of private keystores in OpenPGP. It focuses on the various design choices, their functional implications, and how they contribute to the secure management of private key material.


19.1.1. Design variations

The design of private key subsystems within the OpenPGP framework varies, offering different approaches to cryptographic operations:


	Separate backend operations: Some designs execute the primitive cryptographic operations in a separate backend, using only the cryptographic key material. This approach is particularly compatible with general purpose hardware cryptographic devices, such as trusted platform modules (TPMs) [https://en.wikipedia.org/wiki/Trusted_Platform_Module].


	Component key-based systems: An OpenPGP private key subsystem may be built around component keys, specifically the content of Secret-Key packets [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-secret-key-packet-formats]. These packets contain metadata that is required for some operations. ECDH operations, in particular, require metadata as KDF parameters.


	Full transferable secret keys: Some designs maintain copies of full TSKs in the private key subsystem, leveraging these for private key operations.




While private keystore operations require component keys, they do not require access to the entire OpenPGP certificate.


Note

The third design option, involving the storage of full TSKs in the private key subsystem, can cause “split brain” problems.

For example, a private keystore might contain a TSK with outdated certificate metadata, marking the certificate as expired, while the updated version in the local public keystore could indicate an extended expiration time.

This problem was notably present in GnuPG 1.x, which held separate TSK copies in its private store component. Similarly, the current design of Thunderbird’s OpenPGP subsystem can lead to users experiencing such issues.





19.1.2. Two-tier architecture

At its core, an OpenPGP private key subsystem performs operations requiring only the private cryptographic key material, akin to the “separate backend operations” model described above.

However, the subsystem also supports operations that require additional access to the metadata of the component key. These operations, supplementary to the core keystore operations, do not involve the private key material.

When implementing a keystore based on hardware cryptographic devices like OpenPGP card, its design will consist of two layers:


	core layer: directly handles private key material, and


	supplementary layer: performs additional cryptographic operations that don’t directly use the private key material, such as AES key wrap [https://www.rfc-editor.org/rfc/rfc3394.html] for ECDH.





Note

The decryption process using ECC algorithms, especially ECDH, has multiple steps. The initial step, potentially performed by devices such as OpenPGP cards, directly uses private key material to produce a “shared secret.” Following this, operations like “AES key unwrap” [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-ec-dh-algorithm-ecdh] are conducted in software outside the hardware device.

Further details on this process can be found in the “Advanced Encryption Standard (AES) Key Wrap Algorithm” RFC 3394 [https://www.rfc-editor.org/rfc/rfc3394.html].





19.1.3. Addressing individual keys

A critical aspect of private keystore design involves determining how users address individual keys.

One common method is using the fingerprint of each component key. The availability of these fingerprints, however, depends on the underlying technology of the keystore. For instance, in software-based private keystores or OpenPGP cards, fingerprints of component keys are usually readily available. Keystores relying on generic cryptographic hardware, like TPMs, need to implement their own mechanisms for tracking and managing the fingerprints of each key.



19.1.4. Additional keystore duties

In addition to key management, a keystore often involves various supplementary functions:


	Tracking devices: Keystores may track which devices contain particular component keys.


	Handling secrets: This involves the management of sensitive information such as passphrases for software keys or PINs for OpenPGP cards.


	User interaction alerts: Keystores might also need to prompt users for necessary interactions during certain operations. For example, OpenPGP cards may require user touch confirmation to authorize each cryptographic action.







19.2. Understanding key overwriting (KO) attacks


19.2.1. What they are

OpenPGP is subject to specific vulnerabilities known as key overwriting (KO) attacks. These attacks exploit weaknesses in how encrypted private keys or their metadata are handled, potentially leading to the leakage of secret data when the key is used. The core issue lies in OpenPGP’s handling of Secret-Key packets, where corruption of the non-encrypted fields can cause the unaltered private key material to be used with altered parameters. This mismatch can result in private key leakage.

Importantly, KO attacks are particularly relevant in scenarios where an attacker has control over the storage of a user’s encrypted private key. By manipulating the algorithm field in the Secret-Key packet, the attacker may lead the user to perform a cryptographic operation with a different algorithm. For example, the user might unknowingly perform a DSA operation with ECC private key material. Although the attacker does not have direct access to the encrypted private key material, the attacker can deduce and recover the user’s unencrypted private key material by observing the output of this compromised operation.



19.2.2. Mitigation

Understanding KO attacks is crucial due to their potential to compromise the integrity and confidentiality of encrypted communications, and the risk of complete private key material compromise. KO attacks highlight the necessity for robust key validation procedures and the dangers of storing keys in insecure environments. OpenPGP application developers should conduct a risk assessment to determine the relevance of KO attacks to their applications.

Private keys secured with S2K usage mode 253 (AEAD) [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-secret-key-encryption] are safeguarded against KO attacks. This mode ensures the integrity of the private key by using its unencrypted fields, including the algorithm field, as the authentication tag for integrity verification in the decryption process.

When an attacker alters the unencrypted part of the Secret-Key packet, then decryption of the private key material will fail. This effectively prevents the user from unknowingly using the key material with an altered attacker-controlled algorithm.

Note that while S2K usage mode 253 (AEAD) has been introduced in the OpenPGP version 6 specification, it can also be applied to OpenPGP version 4 key material (see S2K usage mode AEAD).


19.2.2.1. Resources

For comprehensive information on KO attacks, including background, attack vectors, countermeasures, and technical analyses, visit KOpenPGP.com [https://www.kopenpgp.com/]. It is based on the paper “Victory by KO: Attacking OpenPGP Using Key Overwriting” written by Lara Bruseghini, Daniel Huigens, and Kenneth G. Paterson for the Proceedings of ACM Conference on Computer and Communications Security, Los Angeles, November 2022.







            

          

      

      

    

  

    
      
          
            
  

20. Advanced material: Signatures


20.1. Notation signature subpackets

Notation signature subpackets [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#notation-data] can be used to effectively extend the otherwise limited set of signature subpacket types in OpenPGP with user-defined notations. Issuers can use these notations to add name-value pairs to an OpenPGP signature.

Notation names - strings encoded in UTF-8 - may reside in the “user namespace.” This namespace is characterized by a notation tag, followed by a DNS domain name, both in UTF-8 format.

Notations, as described earlier, allow for user-defined extensions to the OpenPGP signature subpacket types. A practical and popular application of this functionality is seen in Keyoxide, a decentralized identity verification service. Keyoxide uses notations in the ariadne.id namespace. For the details of this implementation, refer to the Keyoxide documentation [https://docs.keyoxide.org/wiki/ariadne-identity/].



20.2. Choosing the hash algorithm for a signature

A central element of signature packets is the hash digest of the input data. OpenPGP software typically supports a variety of hash mechanisms. This ability to choose from multiple options is part of what makes OpenPGP flexible in its cryptography, a feature known as cryptographic agility. The chosen mechanism is then used to calculate the hash digest.

Different hash mechanisms offer different trade-offs:


	Hash digest size: The size of the hash digest is a crucial consideration. Generally, a larger hash size is more robust against cryptanalysis. Hash digests are relatively small – typically ranging in size from 32 to 64 bytes. However, in some cases - especially where small messages are transmitted over bandwidth-limited networks - larger hash sizes may unacceptably increase message size.


	Computational cost: Different hash algorithms have different computational costs. Where computing environments are constrained, some OpenPGP users may prefer to limit this cost.




Choosing the hash algorithm is not arbitrary but is guided by specific preferences associated with the OpenPGP certificates involved. The following sections discuss how these preferences influence which hash algorithm is chosen.


20.2.1. General signature context, local algorithm choice

In many instances, the creation of a signature is not intended for a specific individual or entity. Instead, these signatures are designed to be legible for any recipient who might encounter them.

Take, for example, the self-signatures that are part of a certificate. These are intended for a wide audience — essentially, anyone who might interact with the certificate. Another example is the data signatures used for software packages. These signatures are not for a single recipient but for any user or system that verifies the signature, potentially spanning years.

In such cases, where there isn’t a specific recipient in mind, the issuer of the signature has the freedom to select the hash algorithm. This choice is made based on the issuer’s own criteria or requirements, independent of any third party.



20.2.2. Specific signature context, recipient-driven choice

When a message is being prepared for a particular recipient, the selection of the hash algorithm for the signature packet should be guided by the recipient’s hash algorithm preference [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-hash-algorithm-preferences].

The recipient’s hash algorithm preference is defined in the metadata of their OpenPGP certificate. See Algorithm preferences and feature signaling for more details.

In this workflow, the signed hash digest is created with a hash algorithm representing the intersection of the recipient’s preferences and the sender’s capabilities and preferences.




20.3. Signature versions

As described in the RFC [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-signature-packet-type-id-2], the version of a generated signature packet must conform to the version of the key that issues the signature.

That is:


	OpenPGP version 6 keys must generate version 6 signature packets


	OpenPGP version 4 keys must generate version 4 signature packets




Note that some historical version 3 signature packets may still be relevant for applications that handle old OpenPGP data[^sig-v3]. These version 3 signature packets will have been generated by version 4 keys.

[sig-v3]Version 4 signature packets were introduced in RFC 2440 [https://datatracker.ietf.org/doc/html/rfc2440#section-5.2] in 1998, which specifies that applications SHOULD generate v4 signature, however generation of v3 signature packets has remained allowed through RFC 4880 [https://www.rfc-editor.org/rfc/rfc4880.html#section-5.2].





            

          

      

      

    

  

    
      
          
            
  

21. Advanced material: Signatures over data


21.1. Internals of inline signed messages

Inline signed messages are one of the forms of OpenPGP data signatures. An inline signed message joins the signed data and its corresponding data signature into a single OpenPGP message.

OpenPGP defines two variant forms of inline signed messages:


	One-pass signed messages This is the commonly used format for inline signed messages. A signer can produce and a verifier can verify this format in one pass.


	Prefixed signed messages This format predates[1] one-pass signed messages and is conceptually slightly simpler. However, it is now rarely used and can be considered a legacy format.





21.1.1. One-pass signed message

This is the commonly used format for inline signed messages.


21.1.1.1. Structure

A one-pass signed OpenPGP message consists of three segments:


	One-pass signature packets: These one or more packets precede the signed data and enable signature computation (both creation and verification) in a single pass.


	OpenPGP message: This contains the original payload data (e.g., the body of a message), which is signed without additional interpretation or conversion. Internally, a signed message [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-openpgp-messages] consists of one or more OpenPGP packets. This payload is typically stored as either a Literal Data Packet, or a Compressed Data Packet.


	Data signature packets: These contain the cryptographic signature corresponding to the signed data.





[image: Depicts the structure of a one-pass signed message. Two one-pass signatures lead a literal data packet, followed by two signature packets. Arrows show, how the hash-algorithm field of the one-pass signatures is inspected in order to initiate the hashing procedure.]
Fig. 34 The structure of a one-pass signed message.




Note

Despite its name, a one-pass signature packet is not a type of signature packet.

Instead, it’s a type of auxiliary packet that can be used in conjunction with signature packets, to enable efficient generation and checking of inline signed messages.

The structure of a one-pass signature packet closely mirrors an OpenPGP signature packet. However, it does not contain a cryptographic signature.





21.1.1.2. The function of the one-pass signature packet

The purpose of this packet is efficient handling of inline signed messages in stream processing mode. This is particularly important when the signed message is large and exceeds available memory in size.

Without this packet, the position of signature packets within an inline signed OpenPGP message constitutes a trade-off:


	The producer of a signed OpenPGP message wants to streamline the signature calculation process in such a way that allows to emit a copy of the signed data while calculating the cryptographic signature. On the signer’s side, the signature packet is therefore easy to store after the signed data.


	The verifier, on the other hand, needs some information from the signature packet to perform the signature verification process. In particular, the verifier needs to know which hash algorithm was used to calculate the signature, to perform the same hashing operation on the message data.




As a consequence, without a one-pass signature packet, either:


	The producer would need to process the input data twice:


	once to calculate the cryptographic signature, and


	a second time to emit the signed data (this format result is a Prefixed signed message), or






	The verifier would need to process the OpenPGP message twice:


	once to read the signature packets at the end to determine the hash algorithm, and


	a second time to process the body of the message, and calculate the hash verifying the signature.








The one-pass signature packet solves this issue by allowing both the creation and verification of a signed message in a single pass. The one-pass signature packet effectively contains an advance copy of the data in the signature packet, but without the cryptographic signature data.

The signer can easily emit the metadata in the one-pass signature packet before processing the full message. For the verifier, availability of this metadata at the start of the signed message enables processing of the message body.

Even in stream processing mode, signers can efficiently generate one-pass signed messages, and verifiers can efficiently check them.



21.1.1.3. Creation

To produce a one-pass inline signature, the signer decides on a hash algorithm and emits a one-pass signature packet into the destination OpenPGP message. This contains essential information such as the fingerprint of the signing key and the hash algorithm used for computing the signature’s hash digest. The signer then processes the entirety of the signed message, emitting it as a series of one or more packets into the message as well. Once the data is processed, the signer calculates a cryptographic signature using the calculated hash value. Lastly, the result is emitted as a data signature packet to the output message, and the whole packet sequence can be efficiently stored or transmitted.



21.1.1.4. Verification

For efficient verification, an application must understand how to handle the OpenPGP message prior to reading from it. This requirement is addressed by the one-pass signature packets located at the beginning of inline signed messages. This setup enables the verifier to process the data correctly and efficiently in a single pass.

Strictly speaking, knowing just the hash algorithm would be sufficient to begin the verification process. However, having efficient access to the signer’s fingerprint or key ID upfront allows OpenPGP software to fetch the signer’s certificate(s) before processing the entirety of the - potentially large - signed data. This may involve downloading the certificate from a keyserver. In case fetching the signer’s certificate(s) fails, or requires additional input from the user, it is better to signal the user about this before processing the data.

one-pass inline signed messages enable efficient verification in one pass, structured as follows:


	Initiation with one-pass signature packets: These packets begin the verification process. They include the signer’s key ID/fingerprint, essential for identifying the appropriate public key for signature validation.


	Processing the OpenPGP message: This step involves hashing its data, preparing it for signature verification.


	Verifying signature packets: Located at the end of the message, these packets are checked against the previously calculated hash digest.




Important to note, the signer’s public key, critical for the final verification step, is not embedded in the message. Verifiers must acquire this key externally (e.g., from a key server) to authenticate the signature successfully.



21.1.1.5. Nesting of one-pass signatures

A one-pass signed message can actually contain multiple, nested, signatures.

Formally, this is the case because in the OpenPGP message grammar [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-openpgp-messages] when an input OpenPGP message is one-pass signed, the resulting sequence of packets is in turn also considered an OpenPGP message.

Thus, this signed message can be one-pass signed yet again. This construction means that all signature packet pairs bracket the innermost message, and the outermost one-pass signature packet corresponds to the outermost signature packet.


21.1.1.5.1. Two semantics of nested signatures

There are two different use cases and semantics for nested one-pass signatures:


	Multiple signers issue independent cryptographic signatures that are stored in one shared (and thus space-efficient) inline signed message. In this case, each signer makes a cryptographic statement about just the signed message. The signatures are independent of each other.


	Alternatively, a signer can sign not just the input message, but also include previous signatures in their signature. In this case, the signer makes a cryptographic statement about the pre-existing signature(s) combined with the signed message. This means that the new signer attests the previous signature(s)[2].






21.1.1.5.2. How to pick one

When nesting one-pass signatures, the default expectation would be that each enclosing signature makes a statement about the complete message it contains, including any one-pass signatures within the inner message.

Issuers of signatures can choose the semantics of their signature, using the “nested” flag [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#section-5.4-3.8.1] in the one-pass signature packet. The “nested” flag has a value of either 1 or 0.

Meaning of the “nested” flag:


	0 means that the one-pass signature that this signature encloses is not signed/attested. The new signature doesn’t make a cryptographic statement about the directly enclosed signature. If the directly enclosed one-pass signature also has its “nested” flag set to 0, the enclosing signature also doesn’t include the subsequent inner signature in its hashing, and so on.


	1 means that this one-pass signature makes a cryptographic statement about the full message that it encloses, including all enclosed signatures, if any.




A typical pattern of use is to set the “nested” flag to 1 on the innermost signature and to 0 on all enclosing signatures. With this pattern, all signatures are independent of each other. Each signature makes a statement about just the innermost message payload (which is stored in a literal data packet).



21.1.1.5.3. Examples

As a practical example, consider the following notation:


	LIT("Hello World") represents a literal data packet with the content Hello World.


	COMP(XYZ) represents a compressed data packet over some other packet XYZ.


	OPS₁ represents a one-pass signature packet with the nested flag set to 1. Analogous, OPS₀ has the nested flag set to 0.


	SIG represents a signature packet.




A normal, one-pass signed message looks like this:
OPS₁ LIT("Hello World") SIG

Here, the signature is calculated over the payload Hello World. The signature doesn’t change if the signed message is instead stored as: OPS₁ COMP(LIT("Hello World")) SIG (also see Hashing the signed payload of an inline signature).

A message, where multiple independent one-pass signatures are calculated over the same payload looks the following:
OPS₀ OPS₀ OPS₁ LIT("Hello World") SIG SIG SIG - all three signatures are calculated over the same payload Hello World.

By contrast, a message, where the signer attests an already signed message has the following format:
OPS₁ OPS₁ LIT("Hello World") SIG SIG. While the inner signature is calculated over the usual payload Hello World, the outer signature is instead calculated over OPS₁ Hello World SIG.





21.1.2. Prefixed signed message

A prefixed signed message consists of signature packet(s) followed by the message. For the verifier, processing one-pass signed and prefixed signed messages are equally convenient. However, on the signer’s side, it takes more resources to generate a prefixed signed message.

This is a legacy format. Not all modern implementations support it. However, for example, GnuPG 2.4.x can validate messages with this signature format.


21.1.2.1. Structure

In this format, the signature packets are stored ahead of the message itself:


	Data signature packets: These one or more packets contain the cryptographic signature corresponding to the original data.


	OpenPGP message: This contains the original data (e.g., the body of a message), without additional interpretation or conversion.





[image: Depicts the structure of a prefixed signed message. As an example, two signature packets lead a literal data packet. Arrows show, how the signatures hash algorithm field is inspected to start the hashing procedure.]
Fig. 35 Structure of a prefixed signed message.



Compared to a one-pass signed message, there are no one-pass signature packets in this format, and the (otherwise equivalent) signature packet(s) are stored ahead of the signed data.


Note

Even when a prefixed signed message contains multiple signature packets, each signature packet contains an independent signature of just the message payload. Signatures do not include subsequent signatures in their hashes, every signature is only over the raw payload data of the message.





21.1.2.2. Format is inefficient for the signer

For verification, this format is equally convenient as the one-pass signed message form.

However, when a signer creates a prefixed signed message, the signed data must be processed twice:


	once reading it to calculate the cryptographic signature, and


	once more to store the data in the generated OpenPGP message, after the signature packet(s).







21.1.3. Hashing the signed payload of an inline signature

When inline signing a message, the hash for the signed content is calculated over just the raw payload contained in a literal data packet. No metadata of the literal data packet is included in the signed hash. Even if a compressed data packet wraps the literal data packet, the inline signature is still calculated over the uncompressed content of the literal data packet.

The calculation of inline data signatures is unusual in two regards:


	Most OpenPGP signature calculations include packet metadata, but for literal data packets, only the payload is hashed.


	Packets are usually hashed without transforming the packet content for hashing. Decompressing the content of a compressed data packet for hashing is an exception to this pattern.




However, this approach means that detached signatures and inline signatures are calculated on exactly the same data.

One format can be transformed into the other, after the fact, without requiring the private key material of the signer. A compression layer can be inserted or removed without disturbing the validity of an existing signature.



[1]
One-pass signing was first specified in RFC 2440 [https://www.rfc-editor.org/rfc/rfc2440.html#section-5.4]. The format was not supported in PGP 2.6.x. For one discussion of the feature in the lead-up to the standardization of RFC 2440, see here [https://mailarchive.ietf.org/arch/msg/openpgp/U4Qg3Z9bj-RDgpwW5nmRNetOZKY/].



[2]
It’s unclear to the authors of this text if any real-world use case for signatures that notarize inner signatures exists.








            

          

      

      

    

  

    
      
          
            
  

22. Advanced material: Signatures on components


22.1. Certification recipes

Different signatures in OpenPGP serve various specific purposes. This section provides practical guidance on creating these signatures, illustrating each with concrete examples.


22.1.1. Change algorithm preferences

To modify the preferred symmetric, compression, hash, or AEAD algorithms for a key, the key owner needs to issue a direct key signature (type ID 0x1F) on the primary key.

This signature should have the following structure:



	Subpacket

	Area

	Critical

	Mandatory

	Notes





	Signature Creation Time

	Hashed

	True

	True

	Current time



	Issuer Fingerprint

	Hashed

	True or False

	Strongly Recommended

	The primary key is the issuer



	Key Flags

	Hashed

	True

	False

	Retain key flags from the previous self-signature



	Features

	Hashed

	True

	False

	Retain features from the previous self-signature



	Key Expiration Time

	Hashed

	True

	False

	Retain expiration time from the previous self-signature, if applicable



	Hash Algorithm Preferences

	Hashed

	False

	False

	New preferences



	Compression Algorithm Preferences

	Hashed

	False

	False

	New preferences



	Symmetric Algorithm Preferences

	Hashed

	False

	False

	New preferences



	AEAD Algorithm Preferences

	Hashed

	False

	False

	New preferences








22.1.2. Change expiration time

To adjust the expiration time of an OpenPGP certificate, a new DirectKey signature (type ID 0x1F) with a modified Key Expiration Time subpacket must be issued. The structure of this signature is identical to the one outlined in the previous section on changing algorithm preferences.

Additionally, the expiration time can be altered for individual User IDs (detailed below) or separate subkeys (see Section 8.2.1).



22.1.3. Add User ID

To bind a User ID to an OpenPGP certificate a certification signature (type ID 0x10-0x13) is used which should have the following structure:



	Subpacket

	Area

	Critical

	Mandatory

	Notes





	Signature Creation Time

	Hashed

	True

	True

	Current time



	Issuer Fingerprint

	Hashed

	True or False

	Strongly Recommended

	The primary key is the issuer



	Primary User ID

	Hashed

	True

	False

	Optional



	Signature Expiration Time

	Hashed

	True

	False

	Optional






In addition to these subpackets, self-certifications for User IDs can include others – such as key flags, features, and algorithm preferences – as shown in the previous table. This enables the specification of unique capabilities and preferences for each identity associated with the certificate.



22.1.4. Remove or revoke a User ID

Since OpenPGP certificates are often distributed by the means of key servers, new signatures on a certificate are often “merged” into existing copies of the certificate locally by the recipient.

This integration process means it is practically impossible to directly remove signatures or User IDs from a certificate, as there is no way to communicate the intention of packet deletion to the recipient.

To effectively mark a User ID as invalid, the user can publish a copy of their certificate with a Certification Revocation signature (type ID 0x30) attached to the invalidated User ID. This signature signals that the specified User ID is no longer valid or associated with the certificate holder.

The structure of a Certification Revocation signature is as follows:



	Subpacket

	Area

	Critical

	Mandatory

	Notes





	Signature Creation Time

	Hashed

	True

	True

	Current time



	Issuer Fingerprint

	Hashed

	True or False

	Strongly Recommended

	The primary key is the issuer



	Reason for Revocation

	Hashed

	True

	False

	Determines soft or hard revocation






For User ID revocations, the Reason for Revocation subpacket is crucial. A value of 0 means no specific reason, leading to a hard revocation, while 32 indicates the User ID is no longer valid, resulting in a soft revocation. Omitting the reason subpacket is also equivalent to a hard revocation.

It is generally advisable to use reason code 32 for revoking User IDs.



22.1.5. Add a subkey

As part of life-cycle management, users may need to add a new subkey to their OpenPGP certificate, often for reasons such as upgrading to a subkey with more advanced cryptographic algorithms. The process involves creating a specific signature structure:



	Subpacket

	Area

	Critical

	Mandatory

	Notes





	Signature Creation Time

	Hashed

	True

	True

	Current time



	Issuer Fingerprint

	Hashed

	True or False

	Strongly Recommended

	The primary key is the issuer



	Key Flags

	Hashed

	True

	Strongly Recommended

	Determine the usage of the key



	Key Expiration Time

	Hashed

	True

	False

	Specifies the expiration time of the subkey



	Embedded Signature

	Hashed

	True

	If Key Flags contains S

	Signing subkeys require embedded Primary Key Binding signature



	Hash Algorithm Preferences

	Hashed

	False

	False

	Per key preferences



	Compression Algorithm Preferences

	Hashed

	False

	False

	Per key preferences



	Symmetric Algorithm Preferences

	Hashed

	False

	False

	Per key preferences



	AEAD Algorithm Preferences

	Hashed

	False

	False

	Per key preferences






In addition to these subpackets, users can specify algorithm preferences for each subkey, distinct from those set in the certificate’s Direct Key signature.



22.1.6. Revoke a subkey

Subkeys, like User IDs, can be individually revoked in OpenPGP.
This is done by issuing a Subkey Revocation signature (type ID 0x28) using the primary key.

The structure of such a signature is straightforward:



	Subpacket

	Area

	Critical

	Mandatory

	Notes





	Signature Creation Time

	Hashed

	True

	True

	Current time



	Issuer Fingerprint

	Hashed

	True or False

	Strongly Recommended

	The primary key is the issuer



	Reason for Revocation

	Hashed

	True

	False

	Determines soft or hard revocation






In Subkey Revocation signatures, the reason for revocation [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-reason-for-revocation] subpacket can only have values in the range of 0-3. The values 1 (key superseded) and 3 (key retired and no longer used) indicate soft revocations, whereas values 0 (no reason) and 2 (key compromised) indicate hard revocations.

Note that a value of 32 is not applicable in these signatures.



22.1.7. Revoke a certificate

Users may find themselves needing to revoke their entire OpenPGP certificate, rendering it unusable. This could be for various reasons, such as migrating to a new certificate or in response to a compromise of the certificate’s secret key material.

While a soft-revoked certificate can be re-validated at a later time with a new certification, a hard revocation is permanent.

The recommended way to revoke a certificate is by issuing a Key Revocation signature (type ID 0x20). Its structure is similar to that of a Certification Revocation signature.



	Subpacket

	Area

	Critical

	Mandatory

	Notes





	Signature Creation Time

	Hashed

	True

	True

	Current time



	Issuer Fingerprint

	Hashed

	True or False

	Strongly Recommended

	The primary key is the issuer



	Reason for Revocation

	Hashed

	True

	False

	Determines soft or hard revocation






For Key Revocation signatures, the guidelines regarding the Reason for Revocation subpacket [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-reason-for-revocation] are the same as those for Subkey Revocation signatures.



22.1.8. Common subpackets in OpenPGP signatures

In OpenPGP, certain subpackets are universally expected across all types of signatures, serving fundamental roles in the signature’s structure, verification and validation:


	Signature Creation Time: This is a mandatory subpacket in every OpenPGP signature. It contains the timestamp of when the signature was created. For security and integrity, this subpacket must be located in the hashed area of the signature and is recommended to be marked as critical.


	Issuer Fingerprint: Essential for signature validation, this subpacket identifies the key (or subkey) that was used to create the signature. OpenPGP v6 signatures should include the Issuer Fingerprint subpacket, containing the 32-byte fingerprint of the key.





Note

The key used as the issuer in the signature might be a subkey of the certificate.



These subpackets can be placed in either the hashed or unhashed area due to its self-authenticating nature. However, we recommend including them in the signature’s hashed area.




22.2. Managing subpacket conflicts and duplication

In OpenPGP signatures, both the hashed and unhashed areas are composed of lists of subpackets. Inherently, this structure permits the duplication of the same subpacket, which could lead to conflicts. To manage these potential conflicts, the following strategies are used:


	Precedence of hashed area: Subpackets within the hashed area of a signature take precedence over those in the unhashed area. This hierarchy helps resolve conflicts when the same subpacket appears in both areas.


	Handling conflicts within the same area: Conflicts can still arise within the same area, such as when two subpackets have different expiration times. In such cases, the OpenPGP specification [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-notes-on-subpackets] advises that implementations should favor the last occurrence of a conflicting subpacket in the hashed area.




In certain scenarios, having duplicate subpackets with conflicting content is logical and even necessary. For example, consider a signature created by a version 4 issuer key, which was upgraded from an older OpenPGP version (like v3). Since the key ID calculation scheme changed from v3 to v4, the identifiers for the same key would differ between these versions. Therefore, a v4 signature might contain two issuer key ID subpackets, each with different, yet correct values for v3 and v4 keys, respectively. This allows for backward compatibility and ensures the signature can be validated under both key ID calculation schemes.





            

          

      

      

    

  

    
      
          
            
  

23. Advanced material: Signature verification


23.1. Attribute shadowing

When determining the preferences of a key, several signatures may have to be inspected.

For example, when using a signing subkey to generate a data signature, an implementation might want to check for hash algorithm preferences on the subkey binding signature.
However, the RFC states [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#section-5.2.3.10-2] that signature subpackets in a direct key signature (which may also contain preferences) on the OpenPGP certificate’s primary key apply to the entire OpenPGP key, and therefore also to the signing subkey.

In this case, the implementation uses the preferences from the subkey binding signature, but if no such subpacket is found on the latest binding signature, it falls back to the preferences from the direct key signature.
This is called attribute shadowing, since direct key signature subpackets apply to all subkeys, but are shadowed by binding signature subpackets.


[image: Depicts a certificate with to dedicated signing subkeys and a subkey binding signature each. The primary key carries a direct-key signature, which specifies SHA-512 and SHA-256 as hash algorithm preferences. The binding signature of the first signing subkey does not specify preferences, while the binding signature of the second subkey defines SHA-384. Signatures made using the first subkey source the hash algorithm preferences from the direct-key signature, due to the absence of a preference subpacket on the binding signature, while for signature made using the second subkey the direct-key signature's preferences are shadowed by the subkey signatures preferences subpacket.]

Fig. 36 Inheritance and Shadowing of Attributes




Note

Attribute shadowing is relatively straightforward to reason about when used for algorithm preferences. For other subpacket types, shadowing may be confusing, and/or the semantics underspecified (e.g. for key expiration time subpackets).





23.2. Signature shadowing

When inspecting signatures on a component of an OpenPGP certificate, of the signatures that are in effect for each function, only the newest is considered.

In other words:


	If there are three binding signatures A, B, C for a subkey,


	where:


	A was created at t0,


	B at t1, and


	C at t3, with


	t0 < t1 < t2 < t3.






	Then at t2, an implementation only needs to consider signature B,


	because C is not yet in effect, and


	A is shadowed, because it is older than B.









[image: Depicts a gantt-style diagram visualizing how the validity of a certificates components changes over time, depending on component signatures.]

Fig. 37 An example for how certificate validity can change with time.




Note

Signature shadowing should not be confused with attribute shadowing.



As attribute and signature shadowing can occur in combination, it is not always obvious which properties a key has at a given time.


[image: Depicts a certificate with a subkey, whose capabilities change over time, due to signature shadowing another.]

Fig. 38 Signatures shadow one another, based on reference time.





23.3. Which signatures take precedence?

Multiple signatures can be attached to an OpenPGP certificate or component. These signatures can contain conflicting information.

When verifying a signature that is not self-qualifying, an implementation needs to inspect self-qualifying signatures in the issuer’s certificate for qualification. The certificate may contain multiple signatures for one component.

For example, there could be multiple subkey binding signatures for one subkey. This could be the case because the expiration time in the original binding signature has expired, and the certificate holder has issued a new binding signature with an extended expiration time.

In general, for each category of signatures (categories such as binding signatures for one particular subkey), the signature with the latest creation time takes precedence, and only that signature is considered.

Alternatively, there can be competing qualifying signatures of different types, e.g., a direct key signature and a self-certification signature on a primary User ID. Both of these contain metadata associated with the entire certificate. By default, the direct key signature is preferred[1] in OpenPGP version 6.

Depending on how a certificate is “located,” different metadata from possible candidate signatures “shadow” one another. The RFC states [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-notes-on-self-signatures] that when a certificate is “located” by the OpenPGP software “via an identity”, then the metadata associated with that identity takes precedence over more global metadata, such as that associated with the certificate’s primary key, with a direct key signature.

For example, the latest direct key signature could list “SHA512, SHA384” as hash algorithm preferences, while the latest self-certification of the User ID “Bob” could list only “SHA256.”
For yet another User ID “Bobby,” the self-signature could list no hash algorithm preferences at all.
If the user wants to compose a signed message using the associated OpenPGP key they need to figure out which preferences to use.

The specification recommends that implementations decide which signature takes precedence by the way the certificate is “addressed.”


[image: ../_images/narrow-interpretation.png]

Fig. 39 Preferences are sourced from signatures on different components, depending on how the key is addressed.



If the user wants to write an email as “Bob,” it should consider the signature on “Bob,” so SHA256 should be used as hash algorithm.
If instead the user wants to write as “Bobby,” the implementation should inspect the self-certification on “Bobby” instead.
However, since this signature does not carry any hash algorithm preferences subpacket, the implementation must fall back to the direct key signature instead.
The same is true if the certificate is used without any User ID as sender.

To complicate things further:
Algorithm preferences can also be stated on subkey binding signatures, so if the certificate has a dedicated signing subkey, there is yet another signature which could take precedence.
Preferences from the subkey binding signature take precedence over the direct key signature, but not over self-certifications on the User ID.

There can be more than one signature on a component. As an example, there are 3 direct key signatures (e.g., because the key’s expiry has been extended two times).
In general, for each component, only the newest self-signature is “in effect,” and older signatures are “shadowed.”
For each certificate, there is at most one “active” direct key signature, for each User ID at most one active self-certification and for each subkey exactly one subkey binding.



23.4. Complexity of the packet format

OpenPGP certificates can contain complex preference settings. Additionally, the OpenPGP packet format allows a lot of flexibility when storing certificates in TPK format.

User ID packets, for example, do not have a fixed position in a TPK. This means an attacker (or an implementation-internal certificate canonicalization procedure) can change the order in which User IDs appear in the certificate’s packet sequence.

As a concrete example, consider a certificate with multiple User IDs, all marked as primary. Or similarly, a certificate with multiple User IDs of which none is marked as primary.
Clients might apply different heuristics to figure out which User ID actually qualifies as the primary User ID here.

Such subtle changes to the representation of a certificate can lead to different preference settings being deduced, by different OpenPGP implementations.



[1]
However, the semantics of these cases are not currently fully specified, see this discussion [https://gitlab.com/openpgp-wg/rfc4880bis/-/issues/103].







            

          

      

      

    

  

    
      
          
            
  

24. Advanced material: Encryption


24.1. Encrypt to multiple/single subkey per certificate?

A recipient’s certificate can contain more than one usable encryption subkey.
This raises the question, should the message be encrypted for all of them?

There is the argument that a powerful attacker might have managed to add an attacker-controlled encryption subkey to the victim’s certificate.
In this case, only encrypting to the “newest” encryption key would help uncover such an attack. However, a powerful attacker could just MitM any sent messages and just add a PKESK for the victim-controlled encryption keys to hide the fact that the sender used a different key.

On the other hand, a user might have multiple encryption subkeys on purpose.
Picture, for example, a scenario where the same certificate is used on multiple devices, but each device has dedicated encryption subkeys to allow for smoother revocation in case of a lost device.
In this scenario, it is important that the sender encrypts the message to all available encryption subkeys.



24.2. “Negotiating” algorithms based on recipients preference subpackets


24.2.1. Prevent “downgrade” -> Policy

Each implementation should define a “minimum” level of security when it comes to algorithms and key lengths.
If the lowest common denominator of symmetric encryption algorithms preferred by a set of recipients provides too little security, the implementation should either use a configured fallback algorithm instead, or fail to produce a message at all.




24.3. AEAD modes in v2 SEIPD: GCM


Note

This section is still about to be written.







            

          

      

      

    

  

    
      
          
            
  

25. Advanced material: Decryption


25.1. Verify successful session key decryption

SEIPDv1 packets might make use of a “quick check” mechanism to quickly verify that the correct session key was used without the need to decrypt the whole SEIPD packet.
This check consists of 16 random bytes, followed by a copy of the two last bytes, which are prefixed to the plaintext.
During decrypting, these 2 bytes can be compared to the 15th and 16th random byte to detect use of the wrong session key.

Since the chance to accidentally end up with matching quick check bytes albeit the use of the wrong session key is 1:65536, some implementations validate further contents of the plaintext, such as the packet headers.

The standard warns against [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-risks-of-a-quick-check-orac] using the quick check mechanism, as it introduces the risk of a decryption oracle. Instead, the use of SEIPDv2 is recommended, as the AEAD mechanism automatically detects use of the wrong session key early on after the first chunk has been decrypted.



25.2. Anonymous recipients

Having all recipients keys listed as part of the PKESK packets presents a metadata leakage. An observer can easily enumerate recipients of a message by comparing the PKESKs with certificates of potential recipients.

To prevent this issue, the sender can decide to add individual recipients as anonymous recipients using a wildcard key-ID / fingerprint.
This is done by creating a normal PKESK packet for the recipient, but setting the recipient key field to 0 (as well as omitting the version number of the key for v6 PKESKs).

A recipient of such a message that does not find a PKESK addressed specifically to any of their keys, can then try to decrypt any anonymous PKESK packets using any of their encryption subkeys.

To reduce the number of keys to try, the recipient can skip all secret keys which do not share the public-key algorithm stated in the PKESK packet.





            

          

      

      

    

  

    
      
          
            
  

26. Zooming in: Packet structure of certificates

Now that we’ve established the concepts and components that make up OpenPGP certificates, let’s look at the internal details of an example certificate.


26.1. A very minimal OpenPGP certificate

In this section, we will examine a very minimal version of a “public key” variant of Alice’s OpenPGP key, specifically an OpenPGP certificate that excludes private key material.

To achieve this, we will use the Sequoia-PGP tool sq to handle and transform our example OpenPGP key, as well as to inspect internal OpenPGP packet data.

Starting from Alice’s OpenPGP private key, we first produce the corresponding public key/certificate using the following command:

$ sq key extract-cert alice.priv > alice.pub






26.1.1. Splitting the OpenPGP certificate into packets

To create a very minimal version of Alice’s certificate, we will split the data in alice.pub into its component packets and reassemble only the relevant ones back into a new variant.

Execute the following command to achieve this:

$ sq packet split alice.pub





With this command, sq generates a set of files, each containing an individual OpenPGP packet extracted from the original full certificate in alice.pub:

alice.pub-0--PublicKey
alice.pub-1--Signature
alice.pub-2--UserID
alice.pub-3--Signature
alice.pub-4--PublicSubkey
alice.pub-5--Signature
alice.pub-6--PublicSubkey
alice.pub-7--Signature
alice.pub-8--PublicSubkey
alice.pub-9--Signature






[image: Depicts a box with white background and the title "Certificate packet list". Inside, a list of several boxes on white background and varying frame colors represent a list of OpenPGP packets from top to bottom. The first box, with green frame, represents the "Public-Key packet", and includes the green public key symbol. The second box, with yellow frame, represents a "Signature packet" ("Direct Key Signature") and includes the green cryptographic signature symbol. The third box, with black frame, represents a "User ID packet", and includes the black User ID symbol. The fourth box, with yellow frame, represents a "Signature packet" ("Certifying self-signature for User ID"), and includes the green cryptographic signature symbol. The fifth box, with green frame, represents a "Public-Subkey packet" and includes the green public key symbol. The sixth box, with yellow frame, represents a "Signature packet" ("Subkey binding signature") and includes the green cryptographic signature symbol. The seventh box, with green frame, represents a "Public-Subkey packet" and includes the green public key symbol. The eighth box, with yellow frame, represents a "Signature packet" ("Subkey binding signature") and includes the green cryptographic signature symbol. The ninth box, with green frame, represents a "Public-Subkey packet" and includes the green public key symbol. The tenth box, with yellow frame, represents a "Signature packet" ("Subkey binding signature") and includes the green cryptographic signature symbol.]
Fig. 40 Overview of the packets in Alice’s OpenPGP certificate



This process allows us to focus on the specific packets within Alice’s OpenPGP certificate.



26.1.2. Assembling packets into an OpenPGP certificate

In this step, we’ll merge the first two packets of Alice’s certificate to create a very minimal certificate:

Execute the following:

$ sq packet join alice.pub-0--PublicKey alice.pub-1--Signature --output alice_minimal.pub





This command combines the contents of alice.pub-0--PublicKey and alice.pub-1--Signature into a single file named alice_minimal.pub.



26.1.3. Inspecting this certificate

This version of Alice’s certificate contains just two packets:


	the Public-Key packet [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-public-key-packet-formats] for the primary key, and


	a Direct Key Signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#sigtype-direct-key], which is a self-signature that binds metadata to the primary key.




This is the shape of the packets we’ll explore in the subsequent sections:


[image: TODO]
Fig. 41 A minimal OpenPGP certificate, visualized



In real-world scenarios, OpenPGP certificates are typically far more complex than this minimal example. However, this is indeed a valid OpenPGP certificate. In the following sections, we will introduce more components to this certificate, increasing its complexity and exploring their details.

In ASCII-armored representation, this very minimal key appears as follows:

-----BEGIN PGP PUBLIC KEY BLOCK-----

xioGZRbqphsAAAAgUyTpQ6+rFfdu1bUSmHlpzRtdEGXr50Liq0f0hrOuZT7CtgYf
GwoAAAA9BYJlFuqmBYkFpI+9AwsJBwMVCggCmwECHgEiIQaqoYy7JUaFxYNYMgVj
/Te2fzMA+fsOxFc3jNKfECaYswAAAAoJEKqhjLslRoXFZ0cgouNjgeNr0E9W18g4
gAIl6FM5SWuQxg12j0S07ExCOI5NPRDCrSnAV85mAXOzeIGeiVLPQ40oEal3CX/L
+BXIoY2sIEQrLd4TAEEy0BA8aQZTPEmMdiOCM1QB+V+BQZAO
=5nyq
-----END PGP PUBLIC KEY BLOCK-----





The output of sq is presented as a block of text. We will now decode this OpenPGP data and inspect the two packets it contains.

To achieve this, we will use the Sequoia-PGP tool sq and run the packet dump subcommand:

$ sq packet dump --hex alice_minimal.pub





This will allow us to gain a detailed understanding of the packet contents.



26.1.4. Public-Key packet

The output begins with a (primary) Public-Key packet [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-public-key-packet-formats]:

Public-Key Packet, new CTB, 2 header bytes + 42 bytes
    Version: 6
    Creation time: 2023-09-29 15:17:58 UTC
    Pk algo: Ed25519
    Pk size: 256 bits
    Fingerprint: AAA18CBB254685C58358320563FD37B67F3300F9FB0EC457378CD29F102698B3
    KeyID: AAA18CBB254685C5

    00000000  c6                                                 CTB
    00000001     2a                                              length
    00000002        06                                           version
    00000003           65 16 ea a6                               creation_time
    00000007                       1b                            pk_algo
    00000008                           00 00 00 20               public_len
    0000000c                                       53 24 e9 43   ed25519_public
    00000010  af ab 15 f7 6e d5 b5 12  98 79 69 cd 1b 5d 10 65
    00000020  eb e7 42 e2 ab 47 f4 86  b3 ae 65 3e





The Public-Key packet consists primarily of the cryptographic key data. Let’s look at the packet field by field:

OpenPGP packet syntax

The first fields of a packet are governed by the general Packet Syntax [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-syntax]:


	CTB: 0xc6[1]: This is the packet type ID [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-headers] for this packet. The binary representation of the value 0xc6 is 11000110. The first two bits show that the packet is in OpenPGP packet format (as opposed to in Legacy packet format) and the remaining 6 bits encode the type ID value, which is “6.” This type ID value corresponds to a Public-Key packet, as listed in the packet type IDs [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-types].


	length: 0x2a: This indicates the remaining length of this packet.




Public-Key packet syntax

The packet type ID (“6”) defines the semantics of the following data within the packet. In this case, it is a Public-Key packet, which is a kind of Key Material Packet [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-key-material-packets].


	version: 0x06: The key material is in version 6 format. This means that the next part of the packet adheres to the structure of Version 6 Public Keys [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-version-6-public-keys].


	creation_time: 0x6516eaa6: This field represents the key’s creation time. (See also Time Fields [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-time-fields]).


	pk_algo: 0x1b: This corresponds to the key’s public-key algorithm ID, which has a decimal value of 27. Refer to the list of Public-Key Algorithms [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-public-key-algorithms]) for more details.


	public_len: 0x00000020: This field specifies the octet count for the subsequent public key material. In this case, it represents the length of the following ed25519_public field.


	ed25519_public: This is the algorithm-specific representation [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-algorithm-specific-part-for-ed2] of the public key material. The format is based on the value of pk_algo, which, in this case, is 32 bytes of Ed25519 public key data.




Note that the Public-Key packet contains only the public part of the key.


[image: Depicts a box with white background and title "Public-Key packet". In the center a box with white background and green frame is shown. Inside it several items are listed, separated by green dotted horizontal lines. The first three are "Version", "Creation Time", "Public-Key Algorithm" written in black. The last one is written in green and reads "Public Key Material" and has the green public key symbol at its right side.]
Fig. 42 Structure of a Public-Key packet.





26.1.5. Direct Key Signature

The next packet in the certificate is a Direct Key Signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#sigtype-direct-key], which plays a crucial role in binding specific information to the primary key. This signature is contained within the file alice.pub-1--Signature.

This packet binds the data within the signature subpackets with the primary key. Each entry under “Signature Packet -> Hashed area” is one signature subpacket, providing essential information such as algorithm preferences, including symmetric algorithm preference and hash algorithm preferences.

Signature Packet, new CTB, 2 header bytes + 182 bytes
    Version: 6
    Type: DirectKey
    Pk algo: Ed25519
    Hash algo: SHA512
    Hashed area:
      Signature creation time: 2023-09-29 15:17:58 UTC (critical)
      Key expiration time: P1095DT62781S (critical)
      Symmetric algo preferences: AES256, AES128
      Hash preferences: SHA512, SHA256
      Key flags: C (critical)
      Features: MDC
      Issuer Fingerprint: AAA18CBB254685C58358320563FD37B67F3300F9FB0EC457378CD29F102698B3
    Unhashed area:
      Issuer: AAA18CBB254685C5
    Digest prefix: 6747
    Level: 0 (signature over data)

    00000000  c2                                                 CTB
    00000001     b6                                              length
    00000002        06                                           version
    00000003           1f                                        type
    00000004              1b                                     pk_algo
    00000005                 0a                                  hash_algo
    00000006                    00 00  00 3d                     hashed_area_len
    0000000a                                 05                  subpacket length
    0000000b                                    82               subpacket tag
    0000000c                                       65 16 ea a6   sig creation time
    00000010  05                                                 subpacket length
    00000011     89                                              subpacket tag
    00000012        05 a4 8f bd                                  key expiry time
    00000016                    03                               subpacket length
    00000017                       0b                            subpacket tag
    00000018                           09 07                     pref sym algos
    0000001a                                 03                  subpacket length
    0000001b                                    15               subpacket tag
    0000001c                                       0a 08         pref hash algos
    0000001e                                             02      subpacket length
    0000001f                                                9b   subpacket tag
    00000020  01                                                 key flags
    00000021     02                                              subpacket length
    00000022        1e                                           subpacket tag
    00000023           01                                        features
    00000024              22                                     subpacket length
    00000025                 21                                  subpacket tag
    00000026                    06                               version
    00000027                       aa  a1 8c bb 25 46 85 c5 83   issuer fp
    00000030  58 32 05 63 fd 37 b6 7f  33 00 f9 fb 0e c4 57 37
    00000040  8c d2 9f 10 26 98 b3
    00000047                       00  00 00 0a                  unhashed_area_len
    0000004b                                    09               subpacket length
    0000004c                                       10            subpacket tag
    0000004d                                          aa a1 8c   issuer
    00000050  bb 25 46 85 c5
    00000055                 67                                  digest_prefix1
    00000056                    47                               digest_prefix2
    00000057                       20                            salt_len
    00000058                           a2 e3 63 81 e3 6b d0 4f   salt
    00000060  56 d7 c8 38 80 02 25 e8  53 39 49 6b 90 c6 0d 76
    00000070  8f 44 b4 ec 4c 42 38 8e
    00000078                           4d 3d 10 c2 ad 29 c0 57   ed25519_sig
    00000080  ce 66 01 73 b3 78 81 9e  89 52 cf 43 8d 28 11 a9
    00000090  77 09 7f cb f8 15 c8 a1  8d ac 20 44 2b 2d de 13
    000000a0  00 41 32 d0 10 3c 69 06  53 3c 49 8c 76 23 82 33
    000000b0  54 01 f9 5f 81 41 90 0e





Below is a field-by-field examination of the packet:

OpenPGP packet syntax

The first fields of a packet are governed by the general Packet Syntax [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-syntax]:


	CTB: 0xc2: This field indicates the Packet type ID for this packet. Bits 7 and 6 show that the packet is in “OpenPGP packet format.” The remaining 6 bits encode the type ID’s value, which is “2” for a Signature packet.


	length: 0xb6: This field shows the remaining length of this packet.




Signature packet syntax

The packet type ID (“2”) defines the semantics of the remaining data in the packet. In this case, as it indicates a Signature packet [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#signature-packet], the following data is specific to this packet type:


	version: 0x06: This is a version 6 signature.


	type: 0x1f: This indicates the Signature Type [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-signature-types].


	pk_algo: 0x1b: This specifies the Public-Key algorithm ID, with decimal 27 corresponding to Ed25519 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-public-key-algorithms]).


	hash_algo: 0x0a: This specifies the hash algorithm ID, with decimal 10 corresponding to SHA2-512 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-hash-algorithms]).


	hashed_area_len: 0x0000003d: This specifies the length of the following hashed subpacket data.




The next segment of this packet contains the hashed subpacket data.

In OpenPGP Signatures, there are two sets of subpacket data: hashed and unhashed. Hashed subpackets are protected by the digital signature of the packet, while unhashed subpackets are not.

A subpacket data set in an OpenPGP Signature contains a list of zero or more Signature subpackets.

The following subpacket data consists of sets of “subpacket length, subpacket type ID, data.” Each subpacket is displayed as one line, starting with the subpacket type description [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-signature-subpacket-specifi] (based on the subpacket type ID). Note that bit 7 of the subpacket type ID signals if that subpacket is “critical.” [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#section-5.2.3.7-7]


Note

Critical here means that the receiver must interpret the subpacket and is expected to fail, otherwise. Non-critical subpackets may be ignored by the receiver.



The subpacket details are as follows:


	Signature Creation Time [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#signature-creation-subpacket]


	Type: 2


	Critical: Yes


	Value: 0x6516eaa6


	Notes: See also Time Fields [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-time-fields].






	Key Expiration Time [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#key-expiration-subpacket]


	Type: 9


	Critical: Yes


	Value: 0x05a48fbd


	Notes: Defined as number of seconds after the key creation time






	Preferred Symmetric Ciphers for v1 SEIPD [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#preferred-v1-seipd]


	Type: 11


	Critical: No


	Value: 0x09 0x07


	Notes: Values correspond to AES with 256-bit key and AES with 128-bit key






	Preferred Hash Algorithms [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#preferred-hashes-subpacket]


	Type: 21


	Critical: No


	Value: 0x0a 0x08


	Notes: Values correspond to SHA2-512 and SHA2-256.






	Key Flags [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#key-flags]


	Type: 27


	Critical: Yes


	Value: 0x01


	Notes: Value corresponds to the certifications key flag.






	Features [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#features-subpacket]


	Type: 30


	Critical: No


	Value: 0x01


	Notes: Value corresponds to Symmetrically Encrypted Integrity Protected Data packet version 1






	Issuer Fingerprint [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#issuer-fingerprint-subpacket]


	Type: 33


	Critical: No


	Value: aaa18cbb254685c58358320563fd37b67f3300f9fb0ec457378cd29f102698b3


	Notes: The fingerprint identifies the component key that issued the signature in this packet. In this instance, the value is the primary key fingerprint of the certificate we’re looking at.








The next part of this packet contains unhashed subpacket data:


	unhashed_area_len: 0x0000000a: length of the following unhashed subpacket data (value: 10 bytes).




As above, the following subpacket data consists of sets of subpacket length, subpacket type id, and data. In this case, only one subpacket follows:


	Issuer Key ID [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#issuer-keyid-subpacket]


	Type: 16


	Critical: No


	Value: aaa18cbb254685c5


	Notes: This is the shortened version 6 Key ID of the fingerprint of this certificate’s primary key.








This concludes the unhashed subpacket data.

This next section shows the remaining fields of this signature packet, which relate to the cryptographic digital signature:


	digest_prefix: 0x6747: the left 16 bits of the signed hash digest


	salt_len, salt: a random salt value [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-advantages-of-salted-signat] with size matching the hash algorithm [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#hash-algorithms-registry])


	ed25519_sig: algorithm-specific [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-algorithm-specific-fields-for-ed2] representation of the signature (here: 64 bytes of Ed25519 signature)




The hash digest is calculated from the following data (see Computing Signatures [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-computing-signatures] in the RFC):


	the signature’s salt


	the serialized primary key’s public data


	the serialized direct key signature packet (excluding the unhashed area)




The signature is calculated from this hash digest.


[image: Depicts a box with white background, title "Signature packet" and subtitle "Direct Key Signature (type ID 0x1F)". In the center a box with white background and yellow frame is shown. Inside it several items are listed, separated by yellow dotted horizontal lines. The first three are "Version", "Public-Key Algorithm" and "Hash Algorithm". The fourth item is called "Hashed area" and confines further sub-items by a light-yellow frame on the top and left side. The sub-items are "Signature Creation Time", "Key Expiration Time", "Preferred Symmetric Ciphers for v1 SEIPD", "Preferred Hash Algorithms", "Key Flags", "Features" and "Issuer Fingerprint". The fifth item is named "Unhashed area" and again introduces an area for sub-items, this time using a light-gray border on the top and left side. The unhashed area has no sub-items though. The last item is called "Cryptographic Signature", with the subtitle "by the primary key over primary key, subkey and signature metadata" and includes the green cryptographic signature symbol on the right side.]
Fig. 43 Structure of a direct key signature packet.






26.2. Encryption subkey

Let’s now look at a subkey in Alice’s OpenPGP certificate. A subkey, when linked to an OpenPGP certificate via its primary key, consists of two elements:


	a key packet that contains the component key itself, and


	a signature packet that links this component key to the primary key and, implicitly, to the full OpenPGP certificate.




We will use the files containing individual packets of Alice’s certificate, which we separated above. In this split representation, the encryption subkey is stored in alice.pub-4--PublicSubkey, while the associated binding self-signature is stored in alice.pub-5--Signature.


Note

It’s common to look at a packet dump for a full OpenPGP certificate as shown below:

$ sq packet dump --hex alice.pub





This command shows the details for the full series of packets in an OpenPGP certificate (refer to the list of packets of Alice’s certificate). Finding a particular packet in that list can take a bit of focus and practice though.

In the following sections,we make it easier for ourselves by directly examining individual packets from the files we created with sq packet split above.




26.2.1. Public-Subkey packet

We’ll now look at the Public-Subkey packet that contains the component key data of this subkey:

$ sq packet dump --hex alice.pub-4--PublicSubkey
Public-Subkey Packet, new CTB, 2 header bytes + 42 bytes
    Version: 6
    Creation time: 2023-09-29 15:17:58 UTC
    Pk algo: X25519
    Pk size: 256 bits
    Fingerprint: C0A58384A438E5A14F73712426A4D45DBAEEF4A39E6B30B09D5513F978ACCA94
    KeyID: C0A58384A438E5A1

  00000000  ce                                                 CTB
  00000001     2a                                              length
  00000002        06                                           version
  00000003           65 16 ea a6                               creation_time
  00000007                       19                            pk_algo
  00000008                           00 00 00 20               public_len
  0000000c                                       d1 ae 87 d7   x25519_public
  00000010  cc 42 af 99 34 c5 c2 5c  ca fa b7 4a c8 43 fc 86
  00000020  35 2a 46 01 f3 cc 00 f5  4a 09 3e 3f





Notice that the structure of this Public-Subkey packet mirrors the primary key’s Public-Key packet above. However, there are notable differences between the two packets:


	The packet type ID (CTB) in this packet shows type 14 (Public-Subkey packet [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-public-subkey-packet-type-i]).


	The pk_algo value is set to 0x19 (decimal 25), which corresponds to X25519 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-public-key-algorithms]. Notably, though both the primary key and this subkey use a cryptographic mechanism based on Curve25519, the encryption key uses Curve 25519 in a different way: namely, X25519 is a Diffie–Hellman function constructed from Curve25519.


	Accordingly, the public part of the cryptographic key pair is labeled x25519_public, as implied by the value (0x19) of pk_algo. However, the actual data is just 32 bytes of cryptographic key material, without any type information.






26.2.2. Subkey binding signature

The aforementioned subkey packet is disconnected from the OpenPGP certificate to which it belongs. The link between the subkey and the complete OpenPGP certificate is made with a cryptographic signature, generated by primary key of the OpenPGP certificate.

The type of signature is called a subkey binding signature, because it “binds” or connects the subkey to the rest of the key.

The signature does more than just bind the subkey; it also carries additional metadata about the subkey. This metadata is in the binding signature, and not in the subkey packet, because it may change over time, while the subkey packet itself remains unchanged. This evolving metadata is stored in self-signatures: if the key holder wants to modify the metadata (for example, to change the key’s expiration time), a newer version of the same signature type can be issued. The recipient OpenPGP software will recognize that the newer self-signature supersedes the older one, and that the metadata in the newer signature reflects the most current intent of the key holder.

Note that this subkey binding signature packet is quite similar to the Direct Key Signature discussed above. Both signatures serve a similar purpose in adding metadata to a component key, particularly as the hashed subpacket data contains much of the same metadata elements.

$ sq packet dump --hex alice.pub-5--Signature
Signature Packet, new CTB, 2 header bytes + 171 bytes
    Version: 6
    Type: SubkeyBinding
    Pk algo: Ed25519
    Hash algo: SHA512
    Hashed area:
      Signature creation time: 2023-09-29 15:17:58 UTC (critical)
      Key expiration time: P1095DT62781S (critical)
      Key flags: EtEr (critical)
      Issuer Fingerprint: AAA18CBB254685C58358320563FD37B67F3300F9FB0EC457378CD29F102698B3
    Unhashed area:
      Issuer: AAA18CBB254685C5
    Digest prefix: 2289
    Level: 0 (signature over data)

    00000000  c2                                                 CTB
    00000001     ab                                              length
    00000002        06                                           version
    00000003           18                                        type
    00000004              1b                                     pk_algo
    00000005                 0a                                  hash_algo
    00000006                    00 00  00 32                     hashed_area_len
    0000000a                                 05                  subpacket length
    0000000b                                    82               subpacket tag
    0000000c                                       65 16 ea a6   sig creation time
    00000010  05                                                 subpacket length
    00000011     89                                              subpacket tag
    00000012        05 a4 8f bd                                  key expiry time
    00000016                    02                               subpacket length
    00000017                       9b                            subpacket tag
    00000018                           0c                        key flags
    00000019                              22                     subpacket length
    0000001a                                 21                  subpacket tag
    0000001b                                    06               version
    0000001c                                       aa a1 8c bb   issuer fp
    00000020  25 46 85 c5 83 58 32 05  63 fd 37 b6 7f 33 00 f9
    00000030  fb 0e c4 57 37 8c d2 9f  10 26 98 b3
    0000003c                                       00 00 00 0a   unhashed_area_len
    00000040  09                                                 subpacket length
    00000041     10                                              subpacket tag
    00000042        aa a1 8c bb 25 46  85 c5                     issuer
    0000004a                                 22                  digest_prefix1
    0000004b                                    89               digest_prefix2
    0000004c                                       20            salt_len
    0000004d                                          0b 0c 89   salt
    00000050  b5 ab 15 e3 7f e4 4d b9  a7 ef 71 48 14 3b ab 26
    00000060  5f 34 7f 6d 48 2e 9f 78  48 58 6d 9a fb
    0000006d                                          6d b2 db   ed25519_sig
    00000070  2f 97 8e c8 12 fc 57 7f  85 aa d1 59 bc 80 40 0b
    00000080  be 2e f0 e1 23 2d bf 4b  71 7e d0 e4 c0 36 e4 d2
    00000090  cf b2 9f b4 a8 4f 3e 2a  21 89 74 c2 33 55 af ac
    000000a0  41 36 1b 2b 60 09 f2 d9  19 f4 41 12 0b





The analysis of this packet dump will be less extensive, given that its structure mirrors the Direct Key Signature explored above.

One notable difference is the type field, showing that this signature is of type 0x18 (Subkey Binding Signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-subkey-binding-signature-ty]).

The pk_algo value of this signature derives from the algorithm of the primary key (0x1b, corresponding to Ed25519). This signature is issued by the primary key, thus using the signing algorithm of the primary key. (The algorithm used to produce the cryptographic signature in this packet is entirely independent of the pk_algo of the key material of this subkey itself, which uses the X25519 mechanism.)

As shown in the text at the top of this packet dump, the hashed subpacket data contains four pieces of information:


	signature creation time: 2023-09-29 15:17:58 UTC (critical)


	key expiration time: P1095DT62781S (critical)


	key flags: EtEr (critical) (encryption for communication, encryption for storage)


	issuer fingerprint: AAA18CBB254685C58358320563FD37B67F3300F9FB0EC457378CD29F102698B3




The rest of the packet mirrors the Direct Key Signature discussed above:


	a 16-bit digest prefix


	a salt value


	the cryptographic signature itself




The signature is calculated over a hash digest. In this case, the hash digest is derived from the following data:


	the signature’s salt


	the serialized primary key’s public data


	the serialized subkey’s public data


	the serialized subkey binding signature packet (excluding the unhashed area)




Refer to Computing Signatures [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-computing-signatures] in the RFC for details.




26.3. Signing subkey


Note

This section is still about to be written.



$ sq packet dump --hex alice.pub-6--PublicSubkey
Public-Subkey Packet, new CTB, 2 header bytes + 42 bytes
    Version: 6
    Creation time: 2023-09-29 15:17:58 UTC
    Pk algo: Ed25519
    Pk size: 256 bits
    Fingerprint: D07B24EC91A14DD240AC2D53E6C8A9E054949A41222EA738576ED19CAEA3DC99
    KeyID: D07B24EC91A14DD2

    00000000  ce                                                 CTB
    00000001     2a                                              length
    00000002        06                                           version
    00000003           65 16 ea a6                               creation_time
    00000007                       1b                            pk_algo
    00000008                           00 00 00 20               public_len
    0000000c                                       33 8c d4 f5   ed25519_public
    00000010  1a 73 39 ef ce d6 0f 21  8d a0 58 a2 3c 3d 44 a8
    00000020  59 e9 13 1f 12 9c 6f 19  d0 3d 40 a0





$ sq packet dump --hex alice.pub-7--Signature
Signature Packet, new CTB, 3 header bytes + 325 bytes
    Version: 6
    Type: SubkeyBinding
    Pk algo: Ed25519
    Hash algo: SHA512
    Hashed area:
      Signature creation time: 2023-09-29 15:17:58 UTC (critical)
      Key expiration time: P1095DT62781S (critical)
      Key flags: S (critical)
      Embedded signature:  (critical)
        Signature Packet
          Version: 6
          Type: PrimaryKeyBinding
          Pk algo: Ed25519
          Hash algo: SHA512
          Hashed area:
            Signature creation time: 2023-09-29 15:17:58 UTC (critical)
            Issuer Fingerprint: D07B24EC91A14DD240AC2D53E6C8A9E054949A41222EA738576ED19CAEA3DC99
          Digest prefix: 5365
          Level: 0 (signature over data)

      Issuer Fingerprint: AAA18CBB254685C58358320563FD37B67F3300F9FB0EC457378CD29F102698B3
    Unhashed area:
      Issuer: AAA18CBB254685C5
    Digest prefix: 841C
    Level: 0 (signature over data)

    00000000  c2                                                 CTB
    00000001     c0 85                                           length
    00000003           06                                        version
    00000004              18                                     type
    00000005                 1b                                  pk_algo
    00000006                    0a                               hash_algo
    00000007                       00  00 00 cc                  hashed_area_len
    0000000b                                    05               subpacket length
    0000000c                                       82            subpacket tag
    0000000d                                          65 16 ea   sig creation time
    00000010  a6
    00000011     05                                              subpacket length
    00000012        89                                           subpacket tag
    00000013           05 a4 8f bd                               key expiry time
    00000017                       02                            subpacket length
    00000018                           9b                        subpacket tag
    00000019                              02                     key flags
    0000001a                                 99                  subpacket length
    0000001b                                    a0               subpacket tag
    0000001c                                       06 19 1b 0a   embedded sig
    00000020  00 00 00 29 05 82 65 16  ea a6 22 21 06 d0 7b 24
    00000030  ec 91 a1 4d d2 40 ac 2d  53 e6 c8 a9 e0 54 94 9a
    00000040  41 22 2e a7 38 57 6e d1  9c ae a3 dc 99 00 00 00
    00000050  00 53 65 20 42 03 ad 0c  db fc b5 9a 98 a6 15 27
    00000060  e4 11 5e f5 f2 a0 3d bc  ed 8d 94 27 41 09 f6 3c
    00000070  4b f8 8a e5 af 73 e1 7d  54 07 40 3f f3 29 34 c2
    00000080  e7 60 56 a5 e1 43 cb 08  ba 66 fe 8b 26 ce e7 cb
    00000090  a5 3a 46 bb a5 c8 5d e4  6a de ae 49 e1 3e 07 bf
    000000a0  c4 9e 98 14 2f 3e c5 f7  01 3e 3e 4f f6 18 2a ac
    000000b0  bd ed 52 0c
    000000b4              22                                     subpacket length
    000000b5                 21                                  subpacket tag
    000000b6                    06                               version
    000000b7                       aa  a1 8c bb 25 46 85 c5 83   issuer fp
    000000c0  58 32 05 63 fd 37 b6 7f  33 00 f9 fb 0e c4 57 37
    000000d0  8c d2 9f 10 26 98 b3
    000000d7                       00  00 00 0a                  unhashed_area_len
    000000db                                    09               subpacket length
    000000dc                                       10            subpacket tag
    000000dd                                          aa a1 8c   issuer
    000000e0  bb 25 46 85 c5
    000000e5                 84                                  digest_prefix1
    000000e6                    1c                               digest_prefix2
    000000e7                       20                            salt_len
    000000e8                           23 3d b2 49 f3 02 4b 08   salt
    000000f0  93 af ba 08 89 f0 e0 91  0f ab 22 26 aa b3 56 57
    00000100  30 ea 95 29 06 60 6f 00
    00000108                           be 44 a1 95 38 a9 6b 3a   ed25519_sig
    00000110  3e 51 f0 55 09 b1 e2 91  a9 17 86 fa f5 1e 3f d0
    00000120  28 46 3c ce 6e 88 14 37  32 ec 3d fa c6 01 ca e5
    00000130  a9 4b b7 63 94 c3 0d 92  ab dc fa 23 50 71 60 31
    00000140  a6 73 c8 33 5a 9c d9 0a







26.4. Adding an identity component

In this section, we’ll look at an identity associated with Alice’s certificate.

User IDs are a mechanism for connecting identities with an OpenPGP certificate. Typically, a User ID is a string combining a name and an email address.

To understand the internal packet structure of this identity and its connection to the OpenPGP certificate, we’ll examine two packets that constitute the identity component. One is the User ID packet [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#uid], located in the file alice.pub-2--UserID, which contains identity information. The other is a  certifying self-signature, specifically a Positive certification of a User ID and Public-Key packet [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-positive-certification-of-a] located in the file alice.pub-3--Signature. This certification, issued after substantial verification of the identity claim, validates the association between the User ID and the certificate’s public key. These packets are snippets from Alice’s full OpenPGP certificate.


26.4.1. User ID packet

First, let’s look at the User ID packet, which encodes an identity that is associated with an OpenPGP certificate:

$ sq packet dump --hex alice.pub-2--UserID
User ID Packet, new CTB, 2 header bytes + 19 bytes
    Value: <alice@example.org>

    00000000  cd                                                 CTB
    00000001     13                                              length
    00000002        3c 61 6c 69 63 65  40 65 78 61 6d 70 6c 65   value
    00000010  2e 6f 72 67 3e






	CTB: 0xcd: This is the packet type ID for this packet. Bits 7 and 6 show that the packet is in “OpenPGP packet format” (not “Legacy packet format”). The remaining 6 bits encode the type ID’s value: “13,” which is the value for a User ID packet [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#uid].


	length: 0x13: This field shows the remaining length of the packet (here: 19 bytes).


	value: This comprises 19 bytes of data that contain UTF-8 encoded text. The value corresponds to the string <alice@example.org>. With this identity component, Alice asserts usage and control over the specified email address. Note that the email address is enclosed in < and > characters, in line with the conventions of  RFC 2822 [https://www.rfc-editor.org/rfc/rfc2822].




Essentially, a User ID packet is just a string marked as a User ID by the packet type ID.



26.4.2. Linking the User ID with a certification self-signature

Similar to linking a subkey to the OpenPGP certificate, a self-signature is used to connect this new component to the certificate.

To bind identities to a certificate with a self-signature, signature types 0x10 - 0x13 can be used. Here, the signature type 0x13 (positive certification) is used.

$ sq packet dump --hex alice.pub-3--Signature
Signature Packet, new CTB, 2 header bytes + 185 bytes
    Version: 6
    Type: PositiveCertification
    Pk algo: Ed25519
    Hash algo: SHA512
    Hashed area:
      Signature creation time: 2023-09-29 15:17:58 UTC (critical)
      Key expiration time: P1095DT62781S (critical)
      Symmetric algo preferences: AES256, AES128
      Hash preferences: SHA512, SHA256
      Primary User ID: true (critical)
      Key flags: C (critical)
      Features: MDC
      Issuer Fingerprint: AAA18CBB254685C58358320563FD37B67F3300F9FB0EC457378CD29F102698B3
    Unhashed area:
      Issuer: AAA18CBB254685C5
    Digest prefix: DBB8
    Level: 0 (signature over data)

    00000000  c2                                                 CTB
    00000001     b9                                              length
    00000002        06                                           version
    00000003           13                                        type
    00000004              1b                                     pk_algo
    00000005                 0a                                  hash_algo
    00000006                    00 00  00 40                     hashed_area_len
    0000000a                                 05                  subpacket length
    0000000b                                    82               subpacket tag
    0000000c                                       65 16 ea a6   sig creation time
    00000010  05                                                 subpacket length
    00000011     89                                              subpacket tag
    00000012        05 a4 8f bd                                  key expiry time
    00000016                    03                               subpacket length
    00000017                       0b                            subpacket tag
    00000018                           09 07                     pref sym algos
    0000001a                                 03                  subpacket length
    0000001b                                    15               subpacket tag
    0000001c                                       0a 08         pref hash algos
    0000001e                                             02      subpacket length
    0000001f                                                99   subpacket tag
    00000020  01                                                 primary user id
    00000021     02                                              subpacket length
    00000022        9b                                           subpacket tag
    00000023           01                                        key flags
    00000024              02                                     subpacket length
    00000025                 1e                                  subpacket tag
    00000026                    01                               features
    00000027                       22                            subpacket length
    00000028                           21                        subpacket tag
    00000029                              06                     version
    0000002a                                 aa a1 8c bb 25 46   issuer fp
    00000030  85 c5 83 58 32 05 63 fd  37 b6 7f 33 00 f9 fb 0e
    00000040  c4 57 37 8c d2 9f 10 26  98 b3
    0000004a                                 00 00 00 0a         unhashed_area_len
    0000004e                                             09      subpacket length
    0000004f                                                10   subpacket tag
    00000050  aa a1 8c bb 25 46 85 c5                            issuer
    00000058                           db                        digest_prefix1
    00000059                              b8                     digest_prefix2
    0000005a                                 20                  salt_len
    0000005b                                    8a 2d 6f da 67   salt
    00000060  35 bc 5d 04 77 b4 9d 67  a8 6e c5 d6 88 53 5f e2
    00000070  ef f9 66 08 bf c2 e0 db  c0 56 0d
    0000007b                                    eb d4 2c a5 19   ed25519_sig
    00000080  01 0f ba 26 d0 82 a2 cf  5c eb 7a a9 72 d9 f3 b2
    00000090  66 07 8b b2 ba 3d b7 89  e4 76 04 6e 35 24 2b 27
    000000a0  29 83 be 91 9c 78 6a cc  b4 d5 69 47 76 2c 29 d6
    000000b0  54 bf 43 19 04 ff 53 98  c0 d5 0b 





Because this packet structure closely mirrors the Direct Key Signature discussed above, we will cover this succinctly.

We’re again looking at a Signature packet. Its type is 0x13 (corresponding to a positive certification signature [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-signature-types]).

The designated public key algorithm and hash function for this signature are Ed25519 and SHA512, respectively.

As shown in the text atop this packet dump, the hashed subpacket data contains the following metadata:


	Signature creation time: 2023-09-29 15:17:58 UTC (critical)


	Key expiration time: P1095DT62781S (critical)


	Symmetric algo preferences: AES256, AES128


	Hash preferences: SHA512, SHA256


	Primary User ID: true (critical)


	Key flags: C (critical)


	Features: MDC


	Issuer fingerprint: AAA18CBB254685C58358320563FD37B67F3300F9FB0EC457378CD29F102698B3




This is a combination of metadata about the User ID itself (designating this User ID as the primary User ID of this certificate), algorithm preferences for this identity, and settings that apply to the primary key.


Note

Historically, the self-signature that binds the primary User ID to the certificate also contains subpackets relevant not to the User ID, but to the primary key itself.

Setting key expiration time and key flags on the primary User ID self-signature is one mechanism to configure the primary key.

The interaction between metadata on direct key signatures and User ID binding self-signatures is subtle [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-notes-on-self-signatures], with changes between version 6 and version 4.



This section is followed, again, by the (informational) unhashed subpacket area.

Subsequently, we see a salt value for the signature and the signature itself.

The signature is calculated over a hash. The hash, in this case, is derived from the following data:


	the signature’s salt


	the serialized primary key’s public data


	the serialized User ID
This section specifies- the serialized self-signature packet (excluding the unhashed area)




Refer to Computing Signatures [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-computing-signatures] in the RFC for details.




26.5. Certifications (Third Party Signatures)


Note

This section is still about to be written.





26.6. Revocations


Note

This section is still about to be written.





[1]
Sequoia uses the term CTB (Cipher Type Byte) to refer to the packet type ID [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-headers].







            

          

      

      

    

  

    
      
          
            
  

27. Zooming in: Packet structure of private key material


27.1. A look at Alice’s (unencrypted) private key packets

Let’s take a look at the key material packets of Alice’s key.

To inspect the internal structure of Alice’s key, we run the Sequoia-PGP tool sq (using the packet dump subcommand). The output of sq is one big block of text. To discuss the relevant content, we’ll only show the output for the packets that contain key data, here:

$ sq packet dump --hex alice.priv






27.1.1. Primary Secret-Key packet

The output starts with the (primary) Secret-Key packet [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-secret-key-packet-formats].

This is the structure of the Secret-Key packet we will now look at.


[image: Depicts a box with white background and title "Secret-Key packet". In the center a box with white background and red frame is shown. Inside it several items are listed, separated by red dotted horizontal lines. The first three are "Version", "Creation Time", "Public-Key Algorithm" written in black. The fourth one is written in green and reads "Public Key Material" and has the green public key symbol at its right side. The fifth one is again written in black and reads "S2K Usage (Secret Key Encryption)". The sixth item reads "Secret Key Material", written in red and has the red private key symbol at its right side.]
Fig. 44 Structure of a Secret-Key packet.



The output of Sequoia’s sq packet dump for this packet:

Secret-Key Packet, new CTB, 2 header bytes + 75 bytes
    Version: 6
    Creation time: 2023-09-29 15:17:58 UTC
    Pk algo: Ed25519
    Pk size: 256 bits
    Fingerprint: AAA18CBB254685C58358320563FD37B67F3300F9FB0EC457378CD29F102698B3
    KeyID: AAA18CBB254685C5

    Secret Key:

        Unencrypted

    00000000  c5                                                 CTB
    00000001     4b                                              length
    00000002        06                                           version
    00000003           65 16 ea a6                               creation_time
    00000007                       1b                            pk_algo
    00000008                           00 00 00 20               public_len
    0000000c                                       53 24 e9 43   ed25519_public
    00000010  af ab 15 f7 6e d5 b5 12  98 79 69 cd 1b 5d 10 65
    00000020  eb e7 42 e2 ab 47 f4 86  b3 ae 65 3e
    0000002c                                       00            s2k_usage
    0000002d                                          ef e1 99   ed25519_secret
    00000030  b5 5f 11 fb aa 93 e8 26  9d 3b b2 2d 72 20 7d ff
    00000040  bd 42 dd 4b e9 a3 36 81  3b a5 cc cf fb





The Secret-Key packet consists in large part of the actual cryptographic key data. Notice that its content is almost entirely the same as the Public-Key packet seen in the previous chapter. Let’s look at the packet field by field:


	CTB: 0xc5[1]: The packet type ID [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-headers] for this packet. The binary representation of the value 0xc5 is 11000101. Bits 7 and 6 show that the packet is in OpenPGP packet format (as opposed to in Legacy packet format). The remaining 6 bits encode the type ID’s value: “5”. This is the value for a Secret-Key packet, as shown in the list of packet type IDs [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-types].


	length: 0x4b: The remaining length of this packet.




The packet type id defines the semantics of the remaining data in the packet. We’re looking at a Secret-Key packet, which is a kind of Key Material Packet [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-key-material-packets].


	version: 0x06: The key material is in version 6 format




This means that the next part of the packet follows the structure of Version 6 Public Keys [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-version-6-public-keys]


	creation_time: 0x6516eaa6: “The time that the key was created” (also see Time Fields [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-time-fields])


	pk_algo: 0x1b: “The public-key algorithm ID of this key” (decimal value 27, see the list of Public-Key Algorithms [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-public-key-algorithms])


	public_len: 0x00000020: “Octet count for the following public key material” (in this case, the length of the following ed25519_public field)


	ed25519_public: Algorithm-specific representation [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-algorithm-specific-part-for-ed2] of the public key material (the format is based on the value of pk_algo), in this case 32 bytes of Ed25519 public key




This concludes the Public Key section of the packet. The remaining data follows the Secret-Key packet format [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-secret-key-packet-formats]:


	s2k_usage: 0x00: The S2K usage value [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-secret-key-encryption-s2k-u] of 0x00 specifies that the secret-key data is not encrypted


	ed25519_secret: Algorithm-specific representation [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-algorithm-specific-part-for-ed2] of the secret key data (the format is based on the value of pk_algo). Because the private key material in this packet is not encrypted, this field





Tip

The overall structure of OpenPGP packets is described in the Packet Syntax [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-syntax] chapter of the RFC.



Note that the Secret-Key packet contains both the private and the public part of the key.



27.1.2. Secret-Subkey packet

Further down in the “packet dump” of Alice’s key, we see the encryption subkey, which we already inspected in its Public-Subkey packet format, above:

Secret-Subkey Packet, new CTB, 2 header bytes + 75 bytes
    Version: 6
    Creation time: 2023-09-29 15:17:58 UTC
    Pk algo: X25519
    Pk size: 256 bits
    Fingerprint: C0A58384A438E5A14F73712426A4D45DBAEEF4A39E6B30B09D5513F978ACCA94
    KeyID: C0A58384A438E5A1

    Secret Key:

        Unencrypted

  00000000  c7                                                 CTB
  00000001     4b                                              length
  00000002        06                                           version
  00000003           65 16 ea a6                               creation_time
  00000007                       19                            pk_algo
  00000008                           00 00 00 20               public_len
  0000000c                                       d1 ae 87 d7   x25519_public
  00000010  cc 42 af 99 34 c5 c2 5c  ca fa b7 4a c8 43 fc 86
  00000020  35 2a 46 01 f3 cc 00 f5  4a 09 3e 3f
  0000002c                                       00            s2k_usage
  0000002d                                          28 7d cd   x25519_secret
  00000030  da 26 16 37 8d ea 24 c7  ce e7 70 c7 9b e5 6f 0a
  00000040  c9 77 fb bd 23 41 73 c9  57 5a bf 7c 4c





Again, this packet consists of the same content as its Public-Subkey equivalent, followed by two additional fields:


	The “S2K usage” field, which indicated whether the private key material is encrypted. Like Alice’s primary key (above), this subkey is not encrypted.


	The private key material: in this case, the algorithm-specific private key data consists of 32 bytes of x25519_secret data.




As with the public key material, the difference between the format of this subkey packet and the private key packet is minimal: Only the packet type ID differs.




27.2. Bob’s (encrypted) private key material

Now we look at the primary key material packet of Bob’s key, which uses passphrase protection.

Secret-Key Packet, new CTB, 2 header bytes + 134 bytes
    Version: 6
    Creation time: 2023-10-13 14:29:00 UTC
    Pk algo: Ed25519
    Pk size: 256 bits
    Fingerprint: BB289FB7A68DBFA8C384CCCDE2058E02D9C6CD2F3C7C56AE7FB53D971170BA83
    KeyID: BB289FB7A68DBFA8

    Secret Key:

        Encrypted
        S2K: Argon2id with t: 1, p: 4, m: 2^21, salt: 3B7F4B0EAC8B39625AB4D4BD690413C7        Sym. algo: AES-256

    00000000  c5                                                 CTB
    00000001     86                                              length
    00000002        06                                           version
    00000003           65 29 54 2c                               creation_time
    00000007                       1b                            pk_algo
    00000008                           00 00 00 20               public_len
    0000000c                                       47 e7 c2 dc   ed25519_public
    00000010  58 8e cb fd f2 49 90 66  ae aa 36 66 ca a9 55 2d
    00000020  71 88 7c 25 91 c3 75 73  1d 07 60 d6
    0000002c                                       fe            s2k_usage
    0000002d                                          16         parameters_len
    0000002e                                             09      sym_algo
    0000002f                                                14   s2k_len
    00000030  04                                                 s2k_type
    00000031     3b 7f 4b 0e ac 8b 39  62 5a b4 d4 bd 69 04 13   argon2_salt
    00000040  c7
    00000041     01                                              argon2_t
    00000042        04                                           argon2_p
    00000043           15                                        argon2_m
    00000044              21 ff be fc  f1 c5 9c 75 9d 1f d1 f8   encrypted_mpis
    00000050  19 e7 fd 47 55 e3 69 ff  2f e8 52 48 66 03 d3 37
    00000060  52 7b 05 cb fa b1 f8 13  f7 f6 20 88 d6 f5 8b c4
    00000070  b4 51 52 ba 6d f9 7c 1a  ee 9f e6 b1 fb 63 d1 ca
    00000080  4a 3f 33 d9 2c c9 26 46





The first portion of Bob’s Secret-Key packet has the same structure as Alice’s, but beginning at the s2k_usage, we see different data. The format of this data is described in Secret-Key Packet Formats [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-secret-key-packet-formats].


	s2k_usage: 0xfe: S2K usage [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-secret-key-encryption-s2k-u] is set to AEAD, here (decimal value 253).


	parameters_len: 0x16 (decimal value: 22): “Cumulative length of all the following conditionally included string-to-key parameter fields.”


	sym_algo: 0x9: Symmetric-Key Algorithm [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-symmetric-key-algorithms] specifies that AES 256 is used as the AEAD algorithm


	s2k_len: 0x14 (decimal value 20): “[..] count of the size of the one field following this octet”




The next set of data is the “string-to-key (S2K) specifier.” Its format depends on the type.


	s2k_type: 0x04 String-to-Key (S2K) Specifier Type [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-string-to-key-s2k-specifier-], set to Argon2 here.




The next fields are specific to Argon2 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-argon2]:


	argon2_salt: “16-octet salt value”


	argon2_t: “number of passes t”


	argon2_p: “degree of parallelism p”


	argon2_m: “the exponent of the memory size”




“Plain or encrypted multiprecision integers comprising the secret key data. This is algorithm-specific and described in Section 5.5.5. If the string-to-key usage octet is 253 (AEAD), then an AEAD authentication tag is at the end of that data.”



[1]
Sequoia uses the term CTB (Cipher Type Byte) to refer to the packet type ID [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-headers].







            

          

      

      

    

  

    
      
          
            
  

28. Zooming in: Packet structure of data signatures

In this chapter, we’ll create signatures using Alice’s private key material, and inspect the packet structure of those signatures.

In some examples, we’ll use a test-message that contains the string hello world followed by one line feed (0x0a) character:

$ echo "hello world" > message.txt






28.1. Detached signature

We can produce a detached signature for this “hello world” message, using Alice’s private signing key material:

$ sq sign --detached --signer-file alice.pgp message.txt
-----BEGIN PGP SIGNATURE-----

wpgGABsKAAAAKQWCZT0tDyIhBtB7JOyRoU3SQKwtU+bIqeBUlJpBIi6nOFdu0Zyu
o9yZAAAAANueIJCkVJ5aC1Zw485o7Y72uHPnk7ktkZyhKH2MuHjCdIHQU0qe/8bR
0B3ywHNzLwUoqj0efYWhj6XeXa08haxUH7i50MEDjfFrPc281B0C5fiiGN4PYc76
B8tA2/ZjsSgHCw==
=n8EV
-----END PGP SIGNATURE-----





And inspect the packet structure of this signature:

$ sq packet dump --hex detached-sig.txt
Signature Packet, new CTB, 2 header bytes + 152 bytes
    Version: 6
    Type: Binary
    Pk algo: Ed25519
    Hash algo: SHA512
    Hashed area:
      Signature creation time: 2023-10-28 15:47:27 UTC (critical)
      Issuer Fingerprint: D07B24EC91A14DD240AC2D53E6C8A9E054949A41222EA738576ED19CAEA3DC99
    Digest prefix: DB9E
    Level: 0 (signature over data)

    00000000  c2                                                 CTB
    00000001     98                                              length
    00000002        06                                           version
    00000003           00                                        type
    00000004              1b                                     pk_algo
    00000005                 0a                                  hash_algo
    00000006                    00 00  00 29                     hashed_area_len
    0000000a                                 05                  subpacket length
    0000000b                                    82               subpacket tag
    0000000c                                       65 3d 2d 0f   sig creation time
    00000010  22                                                 subpacket length
    00000011     21                                              subpacket tag
    00000012        06                                           version
    00000013           d0 7b 24 ec 91  a1 4d d2 40 ac 2d 53 e6   issuer fp
    00000020  c8 a9 e0 54 94 9a 41 22  2e a7 38 57 6e d1 9c ae
    00000030  a3 dc 99
    00000033           00 00 00 00                               unhashed_area_len
    00000037                       db                            digest_prefix1
    00000038                           9e                        digest_prefix2
    00000039                              20                     salt_len
    0000003a                                 90 a4 54 9e 5a 0b   salt
    00000040  56 70 e3 ce 68 ed 8e f6  b8 73 e7 93 b9 2d 91 9c
    00000050  a1 28 7d 8c b8 78 c2 74  81 d0
    0000005a                                 53 4a 9e ff c6 d1   ed25519_sig
    00000060  d0 1d f2 c0 73 73 2f 05  28 aa 3d 1e 7d 85 a1 8f
    00000070  a5 de 5d ad 3c 85 ac 54  1f b8 b9 d0 c1 03 8d f1
    00000080  6b 3d cd bc d4 1d 02 e5  f8 a2 18 de 0f 61 ce fa
    00000090  07 cb 40 db f6 63 b1 28  07 0b







28.2. Inline signature

$ sq sign --signer-file alice.pgp message.txt
-----BEGIN PGP MESSAGE-----

xEYGAAobIK+vlFDAK62+055LpOCoOGecp66NiyRz6M+emCLp5Nbg0Hsk7JGhTdJA
rC1T5sip4FSUmkEiLqc4V27RnK6j3JkByxJiAAAAAABoZWxsbyB3b3JsZArCmAYA
GwoAAAApBYJlPXuNIiEG0Hsk7JGhTdJArC1T5sip4FSUmkEiLqc4V27RnK6j3JkA
AAAAhrggr6+UUMArrb7Tnkuk4Kg4Z5ynro2LJHPoz56YIunk1uApSiAe9CYGgqrs
p6Ud6ARDVcOWWFhxTJK2rNULlZ9k4HPFvUT4PTrjpb4kjRAb6MDgSSclPaj14FjL
rpr/eqQF
=r993
-----END PGP MESSAGE-----





$ sq packet dump --hex inline-sig.txt
One-Pass Signature Packet, new CTB, 2 header bytes + 70 bytes
    Version: 6
    Type: Binary
    Pk algo: Ed25519
    Hash algo: SHA512
    Issuer: D07B24EC91A14DD240AC2D53E6C8A9E054949A41222EA738576ED19CAEA3DC99
    Last: true

    00000000  c4                                                 CTB
    00000001     46                                              length
    00000002        06                                           version
    00000003           00                                        type
    00000004              0a                                     hash_algo
    00000005                 1b                                  pk_algo
    00000006                    20                               salt_len
    00000007                       af  af 94 50 c0 2b ad be d3   salt
    00000010  9e 4b a4 e0 a8 38 67 9c  a7 ae 8d 8b 24 73 e8 cf
    00000020  9e 98 22 e9 e4 d6 e0
    00000027                       d0  7b 24 ec 91 a1 4d d2 40   issuer
    00000030  ac 2d 53 e6 c8 a9 e0 54  94 9a 41 22 2e a7 38 57
    00000040  6e d1 9c ae a3 dc 99
    00000047                       01                            last

Literal Data Packet, new CTB, 2 header bytes + 18 bytes
    Format: Binary data
    Content: "hello world\n"

    00000000  cb                                                 CTB
    00000001     12                                              length
    00000002        62                                           format
    00000003           00                                        filename_len
    00000004              00 00 00 00                            date
    00000008                           68 65 6c 6c 6f 20 77 6f           hello wo
    00000010  72 6c 64 0a                                        rld.

Signature Packet, new CTB, 2 header bytes + 152 bytes
    Version: 6
    Type: Binary
    Pk algo: Ed25519
    Hash algo: SHA512
    Hashed area:
      Signature creation time: 2023-10-28 21:22:21 UTC (critical)
      Issuer Fingerprint: D07B24EC91A14DD240AC2D53E6C8A9E054949A41222EA738576ED19CAEA3DC99
    Digest prefix: 86B8
    Level: 0 (signature over data)

    00000000  c2                                                 CTB
    00000001     98                                              length
    00000002        06                                           version
    00000003           00                                        type
    00000004              1b                                     pk_algo
    00000005                 0a                                  hash_algo
    00000006                    00 00  00 29                     hashed_area_len
    0000000a                                 05                  subpacket length
    0000000b                                    82               subpacket tag
    0000000c                                       65 3d 7b 8d   sig creation time
    00000010  22                                                 subpacket length
    00000011     21                                              subpacket tag
    00000012        06                                           version
    00000013           d0 7b 24 ec 91  a1 4d d2 40 ac 2d 53 e6   issuer fp
    00000020  c8 a9 e0 54 94 9a 41 22  2e a7 38 57 6e d1 9c ae
    00000030  a3 dc 99
    00000033           00 00 00 00                               unhashed_area_len
    00000037                       86                            digest_prefix1
    00000038                           b8                        digest_prefix2
    00000039                              20                     salt_len
    0000003a                                 af af 94 50 c0 2b   salt
    00000040  ad be d3 9e 4b a4 e0 a8  38 67 9c a7 ae 8d 8b 24
    00000050  73 e8 cf 9e 98 22 e9 e4  d6 e0
    0000005a                                 29 4a 20 1e f4 26   ed25519_sig
    00000060  06 82 aa ec a7 a5 1d e8  04 43 55 c3 96 58 58 71
    00000070  4c 92 b6 ac d5 0b 95 9f  64 e0 73 c5 bd 44 f8 3d
    00000080  3a e3 a5 be 24 8d 10 1b  e8 c0 e0 49 27 25 3d a8
    00000090  f5 e0 58 cb ae 9a ff 7a  a4 05







28.3. Cleartext signature

$ sq sign --cleartext-signature --signer-file alice.pgp message.txt
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

hello world
-----BEGIN PGP SIGNATURE-----

wpgGARsKAAAAKQWCZT0vBCIhBtB7JOyRoU3SQKwtU+bIqeBUlJpBIi6nOFdu0Zyu
o9yZAAAAANqgIHAzoRTzu/7Zuxc8Izf4r3/qSCmBfDqWzTXqmVtsSBSHACka3qbN
eehqu8H6S0UK8V7yHbpVhExu9Hu72jWEzU/B0h9MR5gDhJPoWurx8YfyXBDsRS4y
r13/eqMN8kfCDw==
=Ks9w
-----END PGP SIGNATURE-----





$ sq packet dump --hex cleartext-sig.txt
Signature Packet, new CTB, 2 header bytes + 152 bytes
    Version: 6
    Type: Text
    Pk algo: Ed25519
    Hash algo: SHA512
    Hashed area:
      Signature creation time: 2023-10-28 15:55:48 UTC (critical)
      Issuer Fingerprint: D07B24EC91A14DD240AC2D53E6C8A9E054949A41222EA738576ED19CAEA3DC99
    Digest prefix: DAA0
    Level: 0 (signature over data)

    00000000  c2                                                 CTB
    00000001     98                                              length
    00000002        06                                           version
    00000003           01                                        type
    00000004              1b                                     pk_algo
    00000005                 0a                                  hash_algo
    00000006                    00 00  00 29                     hashed_area_len
    0000000a                                 05                  subpacket length
    0000000b                                    82               subpacket tag
    0000000c                                       65 3d 2f 04   sig creation time
    00000010  22                                                 subpacket length
    00000011     21                                              subpacket tag
    00000012        06                                           version
    00000013           d0 7b 24 ec 91  a1 4d d2 40 ac 2d 53 e6   issuer fp
    00000020  c8 a9 e0 54 94 9a 41 22  2e a7 38 57 6e d1 9c ae
    00000030  a3 dc 99
    00000033           00 00 00 00                               unhashed_area_len
    00000037                       da                            digest_prefix1
    00000038                           a0                        digest_prefix2
    00000039                              20                     salt_len
    0000003a                                 70 33 a1 14 f3 bb   salt
    00000040  fe d9 bb 17 3c 23 37 f8  af 7f ea 48 29 81 7c 3a
    00000050  96 cd 35 ea 99 5b 6c 48  14 87
    0000005a                                 00 29 1a de a6 cd   ed25519_sig
    00000060  79 e8 6a bb c1 fa 4b 45  0a f1 5e f2 1d ba 55 84
    00000070  4c 6e f4 7b bb da 35 84  cd 4f c1 d2 1f 4c 47 98
    00000080  03 84 93 e8 5a ea f1 f1  87 f2 5c 10 ec 45 2e 32
    00000090  af 5d ff 7a a3 0d f2 47  c2 0f









            

          

      

      

    

  

    
      
          
            
  

29. Zooming in: Packet structure of encrypted data


29.1. SEIPD v2


29.1.1. Encrypt

We encrypt a short message to Alice, using a public certificate version of Alice’s OpenPGP key:

$ echo "hello world" | sq encrypt --recipient-file alice.pub





This produces an ASCII armored encrypted message:

-----BEGIN PGP MESSAGE-----

wV0GIQbApYOEpDjloU9zcSQmpNRduu70o55rMLCdVRP5eKzKlBkxYaQzuusD78oj
AdiGwQ8MI8sSAXAV4AEMKIcbINqhIBgSm5EV9h+Yl/XV3fEZ1JOaBnrtso2ZAS7S
cgIHAQaWc/Ip4Thq0EZDZwlpRUk/TUL+TWEpsGdQs8ifDyFAk7t3+3XvvLr5dUg3
+Ot+sESkCSjhrZk50HIjwjBVZ6Y159yfaOqttMT6cXqWaxIishPaJ+OR1q2bZS1N
2jFbaROOcbASK6AVzqCWneqkIA==
=WFpq
-----END PGP MESSAGE-----







29.1.2. Inspect the packet dump of the encrypted message

Inspecting the packets of this message, we see:

$ sq packet dump --hex enc.pgp
Public-Key Encrypted Session Key Packet, new CTB, 2 header bytes + 93 bytes
    Version: 6
    Recipient: C0A58384A438E5A14F73712426A4D45DBAEEF4A39E6B30B09D5513F978ACCA94
    Pk algo: X25519

    00000000  c1                                                 CTB
    00000001     5d                                              length
    00000002        06                                           version
    00000003           21                                        recipient_len
    00000004              06                                     recipient_version
    00000005                 c0 a5 83  84 a4 38 e5 a1 4f 73 71   recipient
    00000010  24 26 a4 d4 5d ba ee f4  a3 9e 6b 30 b0 9d 55 13
    00000020  f9 78 ac ca 94
    00000025                 19                                  pk_algo
    00000026                    31 61  a4 33 ba eb 03 ef ca 23   x25519_e
    00000030  01 d8 86 c1 0f 0c 23 cb  12 01 70 15 e0 01 0c 28
    00000040  87 1b 20 da a1 20
    00000046                    18                               x25519_esk_len
    00000047                       12  9b 91 15 f6 1f 98 97 f5   x25519_esk
    00000050  d5 dd f1 19 d4 93 9a 06  7a ed b2 8d 99 01 2e

Sym. Encrypted and Integrity Protected Data Packet, new CTB, 2 header bytes + 114 bytes
    Version: 2
    Symmetric algo: AES-128
    AEAD algo: EAX
    Chunk size: 4096
    Salt: 9673F229E1386AD0464367096945493F4D42FE4D6129B06750B3C89F0F214093
    No session key supplied

    00000000  d2                                                 CTB
    00000001     72                                              length
    00000002        02                                           version
    00000003           07                                        sym_algo
    00000004              01                                     aead_algo
    00000005                 06                                  chunk_size
    00000006                    96 73  f2 29 e1 38 6a d0 46 43   salt
    00000010  67 09 69 45 49 3f 4d 42  fe 4d 61 29 b0 67 50 b3
    00000020  c8 9f 0f 21 40 93
    00000026                    bb 77  fb 75 ef bc ba f9 75 48         .w.u....uH
    00000030  37 f8 eb 7e b0 44 a4 09  28 e1 ad 99 39 d0 72 23   7..~.D..(...9.r#
    00000040  c2 30 55 67 a6 35 e7 dc  9f 68 ea ad b4 c4 fa 71   .0Ug.5...h.....q
    00000050  7a 96 6b 12 22 b2 13 da  27 e3 91 d6 ad 9b 65 2d   z.k."...'.....e-
    00000060  4d da 31 5b 69 13 8e 71  b0 12 2b a0 15 ce a0 96   M.1[i..q..+.....
    00000070  9d ea a4 20                                        ...







29.1.3. Decrypt

$ sq decrypt --dump-session-key --recipient-file alice.sec enc.pgp
Session key: 8DDA27B9B000BD84D0A39DFF66780111
Encrypted using AES-128
Compressed using ZIP
hello world





Inspecting the packets inside the SEIPD container:

$ sq decrypt --dump --recipient-file alice.sec enc.pgp
Public-Key Encrypted Session Key Packet, new CTB, 93 bytes
    Version: 6
    Recipient: C0A58384A438E5A14F73712426A4D45DBAEEF4A39E6B30B09D5513F978ACCA94
    Pk algo: X25519

Encrypted using AES-128
Compressed using ZIP
hello world
Sym. Encrypted and Integrity Protected Data Packet, new CTB, 114 bytes
│   Version: 2
│   Symmetric algo: AES-128
│   AEAD algo: EAX
│   Chunk size: 4096
│   Salt: 9673F229E1386AD0464367096945493F4D42FE4D6129B06750B3C89F0F214093
│
└── Compressed Data Packet, new CTB, 44 bytes
    │   Algorithm: ZIP
    │
    ├── Literal Data Packet, new CTB, 18 bytes
    │       Format: Binary data
    │
    └── Padding Packet, new CTB, 14 bytes
            Unknown variant










            

          

      

      

    

  

    
      
          
            
  

30. Glossary


	AEAD
	See Authenticated Encryption With Associated Data.



	AEAD Algorithm
	See Authenticated Encryption With Associated Data.



	Algorithm Preferences
	The preferences for hash algorithms, compression algorithms, symmetric algorithms and AEAD algorithms are set using direct key signatures or primary User ID binding signatures.

See Change algorithm preferences.



	Asymmetric Cryptography
	Asymmetric cryptography (also known as public-key cryptography) is used in OpenPGP to send messages without using a prior shared secret. For a more detailed discussion see Public-key (asymmetric) cryptography.



	Authenticated Encryption With Associated Data
	Short AEAD, refers to an encryption scheme that ensures confidentiality of a message. Additionally, additional data, which is not confidential, may be associated with the message, ensuring integrity of both the confidential part of the message, as well as the additional data.

See Wikipedia on Authenticated Encryption [https://en.wikipedia.org/wiki/Authenticated_encryption].



	Authentication
	The process of validiting an identity claim.
The term “authentication” here is semantically different from the one used in Authentication Key Flag.



	Authentication Key Flag
	A Key Flag which indicates that a Component Key can be used to prove control over private key material with a challenge-response mechanism. This is typically done to log into a remote system, often using the OpenSSH protocol.

Note that the term “authentication” is used in a different context here than Authentication of identity claims that are associated with a certificate. See Defining operational capabilities of component keys with key flags.



	Authentication Tag
	See Message Authentication Code.



	Authenticity
	See Authentication.



	Back Signature
	See Primary Key Binding Signature.



	Binary Signature
	A Data Signature with the Signature Type ID 0x00, which is used for binary data.



	Binding
	The process of creating a Binding Signature for a Component, or the resulting Binding Signature.

See Self-signatures in certificate formation and management for more.



	Binding Signature
	A self-signature on a component which associates that component to the issuing component key in a certificate.

See Self-signatures in certificate formation and management for more.



	CA
	See Certification Authority.



	Capability
	The operations an OpenPGP Component Key can perform. See Defining operational capabilities of component keys with key flags.



	Certificate
	See OpenPGP Certificate



	Certificate Authority
	See Certification Authority



	Certificate Holder
	A person or other entity, that holds an Transferable Secret Key and thus is able to modify the accompanying OpenPGP Certificate. Typically this is the owner of OpenPGP key.



	Certification
	A certification, in OpenPGP, is a signature that makes a statement about an identity in a certificate, or an entire certificate.

Most commonly, the term is applied to “third-party certifications,” in which an external actor indicates that they have validated the link between an identity and a certificate. However, the term is also used for self-signatures that bind identity components to a certificate.



	Certification Authority
	Also known as Certificate authority [https://en.wikipedia.org/wiki/Certificate_authority], this is an entity that handles digital certificates, especially by signing or issuing them.



	Certification Key Flag
	A Key Flag, indicating that a Component Key can be used for issuing third-party certifications. See Defining operational capabilities of component keys with key flags.



	Certification Revocation Signature Packet
	An OpenPGP Signature Packet to revoke an earlier self-certification of a User ID.

RFC 5.2.1.13 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-certification-revocation-si]



	Certification Signature
	See Certification.



	Certifying Self-Signature
	An OpenPGP Signature Packet by the Certificate Holder on an Identity Component of their own Certificate.



	Certifying Signature
	See Certification.



	Cipher Type Byte
	This historical term was defined in RFC 1991 [https://datatracker.ietf.org/doc/html/rfc1991#section-4.1] and was subsequently superseded by Packet Tag in RFC 2440 [https://datatracker.ietf.org/doc/html/rfc2440#section-4.2], which is in turn superseded by Packet Type ID in the new RFC [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-headers].



	Cleartext Signature
	A Data Signature which exists in a combined text format, encapsulating the (readable) text input it was created for. See Cleartext signatures.



	Cleartext Signature Framework
	A framework for creating cleartext signatures.
See RFC 7 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#cleartext-signature].



	Component
	An element in an OpenPGP Certificate, that represents a component key or identity component.



	Component Key
	See OpenPGP Component Key.



	Compressed Data Packet
	A packet that contains a compressed OpenPGP Message (typically a Literal Data Packet). A Compressed Data Packet represents a “compressed message”.



	Compression
	See Data Compression.



	Creation Time
	The point in time at which e.g. an OpenPGP Signature, an OpenPGP Certificate, or one of its component is created.



	Creator
	See Issuer.



	Criticality Flag
	A flag on Subpackets, that can mark them as critical or non-critical, which is has an influence on signature validation. See Criticality of subpackets.



	Cryptographic Key
	A symmetric or asymmetric cryptographic key. See Cryptographic concepts and terms.



	Cryptographic Signature
	A raw cryptographic signature is an algorithm-specific sequence of bytes created by a Cryptographic Key.



	CTB
	See Cipher Type Byte.



	Data Compression
	The process of encoding information using fewer bits than the original representation.
In OpenPGP data compression is used to reduce the size required for encrypted messages.

See Wikipedia on Data Compression [https://en.wikipedia.org/wiki/Data_compression].



	Data Signature
	Cryptographic signature over binary documents or canonical text documents. See Signatures over data.



	Data Signature Packet
	An OpenPGP Signature Packet which describes a Data Signature. See Signatures over data.



	Delegation
	OpenPGP users can delegate authentication decisions to third parties, and thus rely on certifications they issue. The remote party is then called a “trusted introducer”.

This kind of delegation involves certifications that include the trust signature subpacket.



	Detached Signature
	A Data Signature which exists separately to the data it was created for. See Forms of OpenPGP data signatures.



	Direct Key Signature
	Describes both a Signature Type ID, as well as an according OpenPGP Signature over a Primary Key.

Issued as a Self-Signature it sets preferences and advertises features applicable to an entire Certificate. See Direct key signature.



	Embedded Signature Subpacket
	An OpenPGP Signature Subpacket which contains a complete OpenPGP Signature Packet.

See RFC 5.2.3.34 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-embedded-signature]



	Encrypted Data
	Data that is encrypted.

See Encryption.



	Encryption Key Flag
	A Key Flag, indicating that a Component Key can be used for encrypting data. See Defining operational capabilities of component keys with key flags.

There are two distinct encryption key flags, indicating that the key can encrypt communications, or data in long-term storage respectively.



	Expiration
	A mechanism by which a Component is invalidated due to the Expiration Time of its binding signature being older than the Reference Time by which it is validated.



	Expiration Time
	The time of expiry of an OpenPGP Signature Packet.



	Features Subpacket
	An OpenPGP Signature Subpacket, which denotes advanced OpenPGP features an implementation supports.

For an in-depth view on these subpackets see Direct Key Signature.

See RFC 5.2.3.32 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-features]



	Fingerprint
	See OpenPGP Fingerprint.



	Hard Revocation
	A Revocation Signature Packet for a Certification or a Component Key, which either includes a Reason For Revocation Subpacket with a Revocation Code, that signifies the target being compromised (e.g., 0 or 2), or has no Reason For Revocation Subpacket at all.

See Hard vs soft revocations.

See RFC 5.2.3.31 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-reason-for-revocation].



	Hash Algorithm
	See Hash Function.



	Hash Digest
	Output of a cryptographic hash function for a string of data of any length. See Cryptographic hash functions.



	Hash Function
	A function used to map data of arbitrary size to fixed-size values (see Hash Digest).



	Hash Value
	See Hash Digest.



	Hashed Area
	An area in an OpenPGP Signature Packet containing OpenPGP Signature Subpackets, that is covered by the Hash Digest a Cryptographic Signature is created for. See Hashed and unhashed signature subpackets.



	Hashed Subpacket
	An OpenPGP Signature Subpacket residing in the Hashed Area of an OpenPGP Signature Packet.



	Hybrid Cryptosystem
	A cryptographic system that employs both Asymmetric Cryptography and Symmetric Cryptography. See Hybrid cryptosystems.



	Identity
	An identity of a Certificate Holder. It is represented by an Identity Component, which may be certified using identity certifications, or by a Notation.



	Identity Certification
	An OpenPGP Signature Packet on an Identity Component which certifies its authenticity.

Identity certifications can be issued either:


	by the certificate holder, as a self-signature, or


	by a third party, as a third-party identity certifications.






	Identity Claim
	A Certificate Holder may use Identity Components or Notations to state a claim about their Identity.



	Identity Component
	Part of an OpenPGP Certificate, that is used to associate data about the Certificate Holder with it. See Identity components for further details.



	Identity Verification
	A process by which the Identity Claim of a Certificate Holder is verified. See also Signature Verification.



	Initial Introducer
	An OpenPGP Certificate explicitly delegated to from a Trust Anchor.



	Inline Signature
	An inline signature is a type of OpenPGP message which stores a Data Signature alongside the message it signs. Both the message and the signature are stored in a shared OpenPGP container.

The standard defines two variant formats for inline signatures:


	One-pass signed Message: This format is now commonly used.


	Prefixed signed Message: This is a historical format. It is still supported, but rarely used.




For more context, see Forms of OpenPGP data signatures.



	Issuer
	An entity, that created an OpenPGP Signature Packet using a Transferable Secret Key.



	Issuer Fingerprint Subpacket
	A Subpacket specifying the Fingerprint of an Issuer Key.

See RFC 5.2.3.35 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-issuer-fingerprint]



	Issuer Key
	The OpenPGP Component Key of an Issuer, used to create an OpenPGP Signature Packet.



	Key
	In OpenPGP, and cryptography more generally, the term “key” holds different meanings.

First, it can apply to different cryptographic primitives:


	asymmetric public key


	asymmetric private key


	Symmetric Secret Key




Additionally, in OpenPGP, asymmetric cryptographic keys are used on three different layers of abstraction:


	cryptographic key


	OpenPGP component key


	OpenPGP key (which in turn refers to either an OpenPGP Certificate or a Transferable Secret Key






	Key Expiration Time Subpacket
	An OpenPGP Signature Subpacket Type which defines the Expiration Time for a key.

See RFC 5.2.3.13 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-key-expiration-time]



	Key Flag
	A preference encoded in an OpenPGP Signature Subpacket, that defines the Capability a OpenPGP Component Key has. See Signature subpackets.



	Key Holder
	See Certificate Holder.



	Key ID
	A Key ID is a shorthand identifier for OpenPGP certificates (or for individual subkeys). A Key ID is a shortened versions of a fingerprint:


	For OpenPGP v6 keys, the Key ID consists of the high-order (leftmost) 64 bits of their OpenPGP Fingerprint.


	For OpenPGP v4 keys, the Key ID consists of the low-order (rightmost) 64 bits of their OpenPGP Fingerprint.




Note that since Key IDs are relatively short, they don’t meaningfully guard against collisions. Applications must not assume that Key IDs are unique.



	Key Material
	May refer to Public Key Material or Private Key Material.



	Key Owner
	See Certificate Holder.



	Key Revocation Signature Packet
	A Revocation Self-signature for an entire OpenPGP Certificate.



	Key Server
	A service available over the network, which provides access to OpenPGP Certificates e.g., by searching for an OpenPGP Fingerprint or User ID, via the HKP and/ or HKPS protocols.
Several implementations such as hagrid [https://gitlab.com/keys.openpgp.org/hagrid/], or hockeypuck [https://github.com/hockeypuck/hockeypuck] exist.



	Life-cycle Management
	In OpenPGP several actions are necessary for the prolonged use of an OpenPGP Certificate or adapting its components to the requirements of the Certificate Holder.
These are for example changes to binding signatures (adding or revocation of component keys or direct key signature), modification of expiration time or other metadata for components.
See Self-signatures.



	Literal Data Packet
	A packet that contains a payload of data. It represents a “literal message”.

A literal data packet typically stores the paintext data of an encrypted message, and/or the data of an inline signed message.

See RFC 5.9 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#lit].



	MAC
	See Message Authentication Code.



	Master Key
	See OpenPGP Primary Key.



	Message Authentication Code
	A piece of information used for integrity and authenticity verification of a message. See Message authentication codes.



	Meta Introducer
	An OpenPGP Certificate that acts as a Trusted introducer and has a Trust Depth greater than one.

A meta introducer can introduce other (meta-) introducers.



	Metadata
	Data related to preferences of an OpenPGP Certificate or its Certificate Holder, that can be found in signature packets. See Metadata in certificates.



	Notation
	A mechanism for a Certificate Holder to provide user-defined data using a Notation Signature Subpacket.



	Notation Signature Subpacket
	An OpenPGP Signature Subpacket which is used to add user-defined data to a Certificate. See Notation signature subpackets.



	Notation Tag
	Part of a Notation name.



	One-pass Signature Packet
	One or more packets before the actual data in a Data Signature which contain information to allow a receiving implementation to create hashes required for signature verification.

See The function of the one-pass signature packet.
Also see RFC 5.4 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#one-pass-sig].



	One-pass signed Message
	The commonly used form of an OpenPGP Inline Signature. It combines an OpenPGP Message with signature packets and accompanying auxiliary One-pass signatures.

For details see One-pass signed message.



	OpenPGP Certificate
	An OpenPGP certificate contains public key material, identity claims and third party certifications (but no private key material)



	OpenPGP Component Key
	An OpenPGP Primary Key or OpenPGP Subkey. For an in-depth discussion see Component keys.



	OpenPGP data
	Any data in OpenPGP format, represented as a series of OpenPGP packets. The data could for example represent an OpenPGP Certificate, or an OpenPGP Signature Packet combined with plaintext or encrypted data.



	OpenPGP Fingerprint
	An OpenPGP Fingerprint is a shorthand representation of an OpenPGP Component Key. Fingerprints effectively act as unique identifiers. See Fingerprint.

The Fingerprint of the primary component key is used as an identifier for the full OpenPGP Certificate.



	OpenPGP Implementation
	A piece of software implementing the OpenPGP protocol (to some extend).



	OpenPGP Key
	Used either for an OpenPGP Certificate (containing public key material and metadata), or for an OpenPGP Private Key. See Certificates for an in-depth discussion.



	OpenPGP Message
	A series of OpenPGP packets that represents one of the following formats:


	an encrypted message


	a signed message


	a compressed message


	a literal message




Also see RFC 10.3 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-openpgp-messages].



	OpenPGP Primary Key
	An OpenPGP Component Key that is used in the primary key role of an OpenPGP Certificate. For a more detailed discussion, see Primary key.



	OpenPGP Private Key
	See Transferable Secret Key.



	OpenPGP Public Key
	See OpenPGP Certificate.



	OpenPGP Signature
	See OpenPGP Signature Packet.



	OpenPGP Signature Packet
	A packet that contains a raw cryptographic signature, a Signature Type ID and additional metadata. See OpenPGP Signatures. Basic concepts are introduced in OpenPGP Signatures and more detailed use-cases are explained in Signatures over data and Signatures on components.



	OpenPGP Signature Subpacket
	A data structure in a Signature Packet, that describes metadata and preferences. See Signature subpackets.



	OpenPGP Signature Subpacket Type
	An OpenPGP Signature Subpacket type.



	OpenPGP Signature Type
	The type of an OpenPGP Signature Packet is defined by its Signature Type ID. See Signature types in OpenPGP.



	OpenPGP Signing Subkey
	An OpenPGP Subkey with the Signing Key Flag.



	OpenPGP Subkey
	An OpenPGP Component Key that is used in the subkey role, in an OpenPGP Certificate. For a more detailed discussion, see Subkeys.



	Owner
	See Certificate Holder.



	Packet
	An element in an OpenPGP Certificate or OpenPGP Message.



	Packet Header
	A section of variable length at the beginning of a Packet, which encodes for example the Packet Type ID. See the relevant section in the RFC [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-headers], which explains this section in more detail.



	Packet Tag
	This historical term was defined in RFC 2440 [https://datatracker.ietf.org/doc/html/rfc2440#section-4.2] and is superseded by Packet Type ID in the new RFC [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-packet-headers].



	Packet Type ID
	A numerical value encoded in the first octet of a Packet Header, defining a Packet’s type.



	Positive Certification
	An OpenPGP Signature Type with the Signature Type ID 0x13, which is used in binding signatures for User IDs. This OpenPGP Signature Type implies that the issuer has done substantial verification of the Identity Claim.

See Binding identities to a certificate.



	Preferred AEAD Ciphersuites Subpacket
	An OpenPGP Signature Subpacket Type which defines the preferred version 2 SEIPD algorithms for an OpenPGP Certificate or Component Key. This defines which algorithms the key holder prefers to receive and implicitly signifies the supported algorithms of the key holder’s implementation.

See RFC 5.2.3.15 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-preferred-aead-ciphersuites]



	Preferred Compression Algorithms Subpacket
	An OpenPGP Signature Subpacket Type which defines the preferred compression algorithms for an OpenPGP Certificate or Component Key. This defines which algorithms the key holder prefers to receive.

See RFC 5.2.3.17 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-preferred-compression-algor].



	Preferred Hash Algorithms Subpacket
	An OpenPGP Signature Subpacket Type which defines the preferred hash algorithm for an OpenPGP Certificate or Component Key. This defines which algorithms the key holder prefers to receive.

See RFC 5.2.3.16 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-preferred-hash-algorithms].



	Preferred Symmetric Ciphers for v1 SEIPD Subpacket
	An OpenPGP Signature Subpacket Type which defines the preferred version 1 SEIPD algorithms for an OpenPGP Certificate or Component Key. This defines which algorithms the key holder prefers to receive and implicitly signifies the supported algorithms of the key holder’s implementation.

See RFC 5.2.3.14 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-preferred-symmetric-ciphers].



	Prefixed signed Message
	A type of Inline Signature. This form of Inline Signature is historical and now rarely used. Superseded by One-pass signed Message.

For details see Prefixed signed message.



	Primary Component Key
	See OpenPGP Primary Key.



	Primary Introducer
	See Initial Introducer.



	Primary Key
	See OpenPGP Primary Key.



	Primary Key Binding Signature
	A Binding Signature, which is created by a OpenPGP Signing Subkey on the OpenPGP Primary Key of an OpenPGP Certificate and stored in an Embedded Signature Subpacket in the Binding Signature for the OpenPGP Signing Subkey.

This special case is explained in more detail in Special case: Binding signing subkeys.



	Primary User ID
	A User ID which carries the default preferences for identity components without preferences.

See Implications of the Primary User ID.



	Primary User ID Binding Signature
	A Binding Signature, which is created by an OpenPGP Primary Key to bind a User ID to its OpenPGP Certificate and marking it as the Primary User ID.

This Binding Signature may carry metadata specific to the User ID at hand as well as some applicable to the entire OpenPGP Certificate.

See Self-signature binding to primary User ID.



	Primary User ID Subpacket
	An OpenPGP Signature Subpacket used in User ID self-signatures which allows to signify whether the User ID in question is considered a Primary User ID.

See RFC 5.2.3.27 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#primary-user-id-subpacket]



	Private Key
	See Transferable Secret Key.



	Private Key Material
	A raw cryptographic private key.



	Public Key
	See OpenPGP Public Key.



	Public Key Algorithm
	An asymmetric cryptographic algorithm. See Public-key (asymmetric) cryptography.



	Public Key Cryptography
	See Asymmetric Cryptography.



	Public Key Material
	See OpenPGP Certificate.



	Reason For Revocation Subpacket
	An OpenPGP Signature Subpacket, which is used in Certification Revocation Signature Packet and key revocation signature packets to describe a reason for the revocation.

See RFC 5.2.3.31 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-reason-for-revocation]



	Reference Time
	A point in time at which an OpenPGP Certificate or OpenPGP Signature is evaluated.



	Regular Expression Subpacket
	An OpenPGP Signature Subpacket which allows for limiting delegations to identities matching a regular expression.



	Revocation
	Mechanism to invalidate a component or an entire OpenPGP Certificate using a Revocation Self-signature. See Revocations.



	Revocation Certificate
	A Revocation Self-signature for an OpenPGP Primary Key distributed alongside the plain OpenPGP Primary Key.

See RFC 10.1.2 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-openpgp-v6-revocation-certi]

Note that in OpenPGP v4 this term is typically used [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#section-10.1.3-6] for a bare Revocation Self-signature packet.



	Revocation Code
	A number in a Reason For Revocation Subpacket which represents the reason for a Revocation.



	Revocation Self-signature
	A class of self-signatures to revoke primary keys, User IDs or User Attributes and invalidate subkey binding signatures.

See Revocation self-signatures: Invalidating certificate components.



	Revocation Signature
	See Revocation Signature Packet.



	Revocation Signature Packet
	An OpenPGP Signature Packet used for the revocation of a certification or binding.

Revocation signatures are often self-signatures, more specifically revocation self-signatures.
However, certification revocations can be both self-signatures or third-party signatures.
Additionally, with the deprecated Revocation Key mechanism, third-party Key- and Subkey revocations also exist.



	RFC
	This document, unless noted otherwise, refers to the OpenPGP version 6 specification [https://datatracker.ietf.org/doc/draft-ietf-openpgp-crypto-refresh/] when referring to RFC.



	Secret Key Material
	See Private Key Material.



	SEIPD
	See Symmetrically Encrypted Integrity Protected Data.



	Self-certification
	A certification on a component of an OpenPGP Certificate issued by a component key of the same OpenPGP certificate.



	Self-signature
	An OpenPGP Signature Packet by the Certificate Holder on a Component of their own Certificate.



	Session Key
	A unique shared secret used in encryption in a Hybrid Cryptosystem. See Encryption and Decryption.



	Signature
	See OpenPGP Signature Packet.



	Signature Creation Time Subpacket
	An OpenPGP Signature Subpacket Type which defines the Creation Time for an OpenPGP Signature Packet.

See RFC 5.2.3.11 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-signature-creation-time]



	Signature Expiration Time Subpacket
	An OpenPGP Signature Subpacket Type which defines the Expiration Time for an OpenPGP Signature Packet.

See RFC 5.2.3.18 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-signature-expiration-time]



	Signature On Component
	Cryptographic signature associated with Component Keys or Identity Components. See Signatures on components.



	Signature Over Data
	See Data Signature.



	Signature Packet
	See OpenPGP Signature Packet.



	Signature Subpacket
	See OpenPGP Signature Subpacket.



	Signature Subpacket Type
	See OpenPGP Signature Subpacket Type.



	Signature Type
	See OpenPGP Signature Type.



	Signature Type ID
	A numerical identifier for a Signature Type.



	Signature Verification
	In cryptography the mechanism of verification relates to a process in which a claim (i.e., a signature) is tested (i.e., using the relevant components of a certificate).



	Signer
	A Certificate Holder, that is able to create self-signatures and third-party signatures.



	Signing Key Flag
	A Key Flag, indicating that a Component Key can be used for signing data. See Defining operational capabilities of component keys with key flags.



	Signing Subkey
	See OpenPGP Signing Subkey.



	Signing-capable
	See Signing Key Flag.



	Soft Revocation
	A Revocation Signature Packet for a Certification or a Component Key, which includes a Reason For Revocation Subpacket with a Revocation Code, that does not signify the target being compromised (e.g., 0 or 2).

See Hard vs soft revocations.

See RFC 5.2.3.31 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-reason-for-revocation].



	Strong Authentication
	“Strong Authentication” in this text refers to having ascertained that a certificate and an identity claim on it are legitimately linked. That is, that the person who controls the certificate is correctly represented by the identity component.

Strong authentication in OpenPGP is typically encoded with a certification signature.

Ascertaining strong authentication requires an out-of-band check: Either via a manual verification process, or an automated system that can certify that a user has identified to the system that issues the identity in question (e.g. an email provider can certify email-based identities that it issues to the user).

Also see Authentication.



	Subkey
	See OpenPGP Subkey.



	Subkey Binding Signature
	A Self-signature to associate an OpenPGP Subkey with an OpenPGP Primary Key. See Binding subkeys to a certificate.



	Subkey Revocation Signature Packet
	A Self-signature to revoke an OpenPGP Subkey in an OpenPGP Certificate.

See RFC 5.2.1.12 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-subkey-revocation-signature]



	Subpacket
	See OpenPGP Signature Subpacket.



	Subpacket Type
	See OpenPGP Signature Subpacket Type.



	Symmetric Cryptography
	Symmetric cryptography is used in OpenPGP. For a more detailed discussion see Symmetric-key cryptography.



	Symmetric Secret Key
	The Private Key Material used in Symmetric Cryptography.



	Symmetrically Encrypted Integrity Protected Data
	Short SEIPD, this refers to Symmetric Cryptography based encrypted data, which is used in a Symmetrically Encrypted Integrity Protected Data Packet.

See RFC 5.13 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-symmetrically-encrypted-int].



	Text Signature
	A signature packet with the Signature Type ID 0x01, which is used for textual data.



	Third-party Identity Certification
	Certification by third-parties to confirm ownership of an OpenPGP Certificate (Identity Claim) by a Certificate Holder. See Third-party (identity) certifications.



	Third-party Signature
	A Signature by a third-party on a Component of a Certificate.



	Transferable Secret Key
	A Transferable Secret Key (TSK) is the combination of an OpenPGP Certificate and the associated private key material. Also often referred to as an “OpenPGP private key”. It is discussed in detail in Managing private key material in OpenPGP.



	Trust Amount
	A numerical value between 0 and 255, stored in trust signatures used for indicating the degree of reliance on the delegation.
Values less than 120 indicate partial trust, values equal to or greater than 120 indicate complete trust.

See Trust amounts.
See RFC 5.2.3.21 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-trust-signature]



	Trust Anchor
	An entity in a Trust Model for which trust is assumed and not derived.



	Trust Depth
	This numerical value is part of a Trust Signature and describes the extent of trustworthiness of a Certification, that the signer assigns to it.

See Trust depth/level.



	Trust Level
	See Trust Depth.



	Trust Model
	A model by which trust between identities associated with different OpenPGP Certificates is created. See Third-party (identity) certifications.



	Trust Root
	See Trust Anchor.



	Trust Signature
	The trust signature subpacket on a certifying signature is used for delegation of authentication decisions. With this feature, an OpenPGP user can designate a certificate as a “trusted introducer” and opt to rely on certifications they issue.

See RFC 5.2.3.21 [https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-12.html#name-trust-signature]



	Trusted introducer
	OpenPGP users can choose to rely on certifications issued by a third party. The remote party of such a delegation is called a “trusted introducer”.

See Trust signatures: delegating authentication for more details.



	tsig
	See Trust signature



	TSK
	See Transferable Secret Key.



	Type ID
	See Signature Type ID.



	Unhashed Area
	An area in a Signature Packet containing Signature Subpackets, that is not covered by the Hash Digest a Cryptographic Signature is created for. See Hashed and unhashed signature subpackets.



	Unhashed Subpacket
	A Signature Subpacket residing in the Unhashed Area of a Signature Packet.



	User Attribute
	An Identity Component, which may hold complex attribute data, e.g. a single JPEG image. See User attributes in OpenPGP.



	User ID
	An Identity Component, which describes an Identity of a Certificate Holder. See User IDs in OpenPGP certificates.



	User ID Binding Signature
	A Binding Signature, which is created by an OpenPGP Primary Key to bind a User ID to an OpenPGP Certificate.



	Validation
	A mechanism by which the operational needs of a use-case are met [https://en.wikipedia.org/wiki/Verification_and_validation#Validation].
In OpenPGP terminology this may refer to processes such as ensuring, that an OpenPGP Signature Packet has been created after a Transferable Secret Key’s Creation Time, but before its Expiration Time.



	Validity
	See Validation.



	Verification
	A mechanism by which the compliance with design specifications are met [https://en.wikipedia.org/wiki/Verification_and_validation#Verification].
In OpenPGP terminology this may refer to e.g. Signature Verification or Identity Verification.



	Web Of Trust
	A trust model which is based on a network of certifications and delegations, that can be used to discern the reliability of certificates and their associated identities. See Web of Trust: Decentralized trust decisions.
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32. Appendix A: OpenPGP artifacts


32.1. Alice’s OpenPGP key

-----BEGIN PGP PRIVATE KEY BLOCK-----
Comment: AAA1 8CBB 2546 85C5 8358 3205 63FD 37B6  7F33 00F9 FB0E C457 378C D29F 1026 98B3
Comment: <alice@example.org>

xUsGZRbqphsAAAAgUyTpQ6+rFfdu1bUSmHlpzRtdEGXr50Liq0f0hrOuZT4A7+GZ
tV8R+6qT6CadO7ItciB9/71C3UvpozaBO6XMz/vCtgYfGwoAAAA9BYJlFuqmBYkF
pI+9AwsJBwMVCggCmwECHgEiIQaqoYy7JUaFxYNYMgVj/Te2fzMA+fsOxFc3jNKf
ECaYswAAAAoJEKqhjLslRoXFZ0cgouNjgeNr0E9W18g4gAIl6FM5SWuQxg12j0S0
7ExCOI5NPRDCrSnAV85mAXOzeIGeiVLPQ40oEal3CX/L+BXIoY2sIEQrLd4TAEEy
0BA8aQZTPEmMdiOCM1QB+V+BQZAOzRM8YWxpY2VAZXhhbXBsZS5vcmc+wrkGExsK
AAAAQAWCZRbqpgWJBaSPvQMLCQcDFQoIApkBApsBAh4BIiEGqqGMuyVGhcWDWDIF
Y/03tn8zAPn7DsRXN4zSnxAmmLMAAAAKCRCqoYy7JUaFxdu4IIotb9pnNbxdBHe0
nWeobsXWiFNf4u/5Zgi/wuDbwFYN69QspRkBD7om0IKiz1zreqly2fOyZgeLsro9
t4nkdgRuNSQrJymDvpGceGrMtNVpR3YsKdZUv0MZBP9TmMDVC8dLBmUW6qYZAAAA
INGuh9fMQq+ZNMXCXMr6t0rIQ/yGNSpGAfPMAPVKCT4/ACh9zdomFjeN6iTHzudw
x5vlbwrJd/u9I0FzyVdav3xMwqsGGBsKAAAAMgWCZRbqpgWJBaSPvQKbDCIhBqqh
jLslRoXFg1gyBWP9N7Z/MwD5+w7EVzeM0p8QJpizAAAACgkQqqGMuyVGhcUiiSAL
DIm1qxXjf+RNuafvcUgUO6smXzR/bUgun3hIWG2a+22y2y+XjsgS/Fd/harRWbyA
QAu+LvDhIy2/S3F+0OTANuTSz7KftKhPPiohiXTCM1WvrEE2GytgCfLZGfRBEgvH
SwZlFuqmGwAAACAzjNT1GnM5787WDyGNoFiiPD1EqFnpEx8SnG8Z0D1AoAAOy9HJ
vIGCqncfqBKmKnSkIMF0dvOGJPuoJaVi3daikcLAhQYYGwoAAADMBYJlFuqmBYkF
pI+9ApsCmaAGGRsKAAAAKQWCZRbqpiIhBtB7JOyRoU3SQKwtU+bIqeBUlJpBIi6n
OFdu0Zyuo9yZAAAAAFNlIEIDrQzb/LWamKYVJ+QRXvXyoD287Y2UJ0EJ9jxL+Irl
r3PhfVQHQD/zKTTC52BWpeFDywi6Zv6LJs7ny6U6RrulyF3kat6uSeE+B7/EnpgU
Lz7F9wE+Pk/2GCqsve1SDCIhBqqhjLslRoXFg1gyBWP9N7Z/MwD5+w7EVzeM0p8Q
JpizAAAACgkQqqGMuyVGhcWEHCAjPbJJ8wJLCJOvugiJ8OCRD6siJqqzVlcw6pUp
BmBvAL5EoZU4qWs6PlHwVQmx4pGpF4b69R4/0ChGPM5uiBQ3Muw9+sYByuWpS7dj
lMMNkqvc+iNQcWAxpnPIM1qc2QrHSwZlFuqmGwAAACDwBi/5Muf1wpuajKjKJAxR
OVLySBVJj9b62QyLOJg0xwDYFSvx1cQi8FF4tCtpn89N0vMTmG7fQoW0DVOI1u0K
tcKrBhgbCgAAADIFgmUW6qYFiQWkj70CmyAiIQaqoYy7JUaFxYNYMgVj/Te2fzMA
+fsOxFc3jNKfECaYswAAAAoJEKqhjLslRoXF3Zgg/R2/mYLb/DpRSKA2ykKvFiRM
HLb8jRg6WGcr+XPuQbgdalxjFetO9EbZjOuYl3Jok/zObOgK7bCEoVEs9/UHR/K+
FcsHp6K860qG87pDlk2saQIwzXPmQcQvLokbeQMB
=DfxN
-----END PGP PRIVATE KEY BLOCK-----







32.2. Bob’s OpenPGP key

Bob uses passphrase-protected secret key packets. His passphrase is password:

-----BEGIN PGP PRIVATE KEY BLOCK-----
Comment: BB28 9FB7 A68D BFA8 C384 CCCD E205 8E02  D9C6 CD2F 3C7C 56AE 7FB5 3D97 1170 BA83
Comment: Bob Baker <bob@example.org>

xYYGZSlULBsAAAAgR+fC3FiOy/3ySZBmrqo2ZsqpVS1xiHwlkcN1cx0HYNb+FgkU
BDt/Sw6sizliWrTUvWkEE8cBBBUh/7788cWcdZ0f0fgZ5/1HVeNp/y/oUkhmA9M3
UnsFy/qx+BP39iCI1vWLxLRRUrpt+Xwa7p/msftj0cpKPzPZLMkmRsK2Bh8bCgAA
AD0FgmUpVCwFiQWkj70DCwkHAxUKCAKbAQIeASIhBrson7emjb+ow4TMzeIFjgLZ
xs0vPHxWrn+1PZcRcLqDAAAACgkQuyift6aNv6hmsCBGbcyDxHuoq4DTmpzhwxCo
Pq37LydspnltmjW6ZlSTLOc7dt+MiSxAUIqH9i0CQVV9cyQfc0Gi7YzjnvQ9RxcZ
raou5c0b126fZ6Rt2vzLHICGw3v7dpCAnR0Y2lUvaAXNG0JvYiBCYWtlciA8Ym9i
QGV4YW1wbGUub3JnPsK5BhMbCgAAAEAFgmUpVCwFiQWkj70DCwkHAxUKCAKZAQKb
AQIeASIhBrson7emjb+ow4TMzeIFjgLZxs0vPHxWrn+1PZcRcLqDAAAACgkQuyif
t6aNv6h76CB+0O5ke9ijamCxuAz9FHaMDN+l+mQrTYFTLCpGpkWIta+yHy3YdGog
5o5KzDQPrSART32y2dRKQci/49rafLDEqHfPzhEPwwcKWjJxpEpA+AUR+r0WuAh0
dRzT5vjPJwLHhgZlKVQsGQAAACAx8dR3SX4a2pudy0Fkzz8IkVhI+iIICfcKe8FC
HBUOFP4WCRQEw0VAyFbfmLAChDiHM714gQEEFcXLCpUyt+CPel5FO0wVibtGYRHr
pFEH/iCz7VYAup7lgerjiqTWdla37S+cAra9XduruJUZ3XS+L4bhYZTiCe2Jn8Fd
wqsGGBsKAAAAMgWCZSlULAWJBaSPvQKbDCIhBrson7emjb+ow4TMzeIFjgLZxs0v
PHxWrn+1PZcRcLqDAAAACgkQuyift6aNv6ggfiDu7s2cKnNx1vn17XV99XFo+DVe
Z/MQBOIbZ7bQz2ufS4PIjnC62/oybvC+GeNcnD8kOYfwtxPtl6DQdbpHYyqgNO21
RMq9oNvei4tKmh7gg6jXGrmWKT6yOIPZyqpQUg/HhgZlKVQsGwAAACAGelHxA+Uz
4M73R7YTo7Xjg3KKoLmc/BYWA/QZ3noQNP4WCRQEG4OjK8N9PVQioBCJ848J8QEE
FRjFFaC6UN5LB6wyCqvozRo/e069dUiwlnYssBNPINsXQiBPcxmoSbyxVRF7LR9G
BZy9/bVQw9ZyPKtbvBQEQKy4m1qvwsCFBhgbCgAAAMwFgmUpVCwFiQWkj70CmwKZ
oAYZGwoAAAApBYJlKVQsIiEGLJuY+NkqRYws6tuzQ2Bff3TWsiqA7IzIPzpNxQjJ
+pUAAAAA6LUg9nuvXbKHUCoGMAdiVV/ttYcO583925/m/T3nC/CNNShitGiBRNAp
HnGyQKVkROyzYznyA9jCF+Ck1jeOCb5nQ7PwxHxRuP4ZG0uRN23pQh4eM2F7V/2F
iOkRF9lAM0AEIiEGuyift6aNv6jDhMzN4gWOAtnGzS88fFauf7U9lxFwuoMAAAAK
CRC7KJ+3po2/qBhPIIPtGEG7TzgO0gXQjhlx9hNBdKxAzScMwRT7oAT3RZrG5hGH
oyvf2n86URceCnfYSwZSOij7CfD0ZJgDmNmvJ5//yx7I7M4YCCheAd5er3/eaF6O
VJt3Ui/pv5VuXLTRC8eGBmUpVCwbAAAAIFnzWg9EBmVGFMUClhrtT5DNdCf+A4OQ
90WbiTHnseuR/hYJFAT5Ylewq+lINPw46gwA5Z6eAQQViAjElYeZobbZ+D001l/M
QvHaiEbEIXadwP3bbjoM43rFoP+p8cNYYECYAL8sx34uIxeixwrL6aOZ8j6Y1zbP
C8jTYNrCqwYYGwoAAAAyBYJlKVQsBYkFpI+9ApsgIiEGuyift6aNv6jDhMzN4gWO
AtnGzS88fFauf7U9lxFwuoMAAAAKCRC7KJ+3po2/qLHdID+av7QZ75Fq4v9YVHpc
wVXtKDX+MOKJM4xz7RvBWErH2xWyqikNZQVuzz/WqOVH/nT+BcqmLWAe3yjrTE4B
hSfrR38Nk23E4Bu4HobVrg7rlMU6SKHRWKeX/iSUmr6GDA==
=UZBq
-----END PGP PRIVATE KEY BLOCK-----
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